
An Introduction to the Z Notation
(Based on [J.Woodcock and J.Davies 1996; J.M. Spivey

1998])

Jing-Jie Lin

Dept. of Information Management
National Taiwan University

November 25, 2010

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 1 / 81

Agenda

What Is Formal Specification
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book
Strengthening the Specification
Implementing the Birthday Book

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 2 / 81

What is Formal Specification

Use mathematical notation to describe in a precise way the
properties which an information system must have, without
unduly constraining the way in which these properties are
achieved.
Formal specifications describe what the system must do
without saying how it is to be done.
A formal specification can serve as a single, reliable reference
point for those

who investigate the customer’s needs,
who implement programs to satisfy those needs,
who test the results, and
who write instruction manuals for the system.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 3 / 81

Specification Qualities

A good specification should be
abstract and complete.
clear and unambiguous.
concise and comprehensible.
easy to maintain and cost-effective.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 4 / 81

Agenda

What Is Formal Specification
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book
Strengthening the Specification
Implementing the Birthday Book

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 5 / 81

What is Z Notation

Z(Zed) is a formal specification language used for describing
and modeling computing systems.
The Z notation is based on

The mathematical language is used to describe objects and their
properties. (e.g., sets, logic, and relations)
Mathematical objects and their properties can be collected together
in schema. The schema language is used to describe the state of a
system, and the ways in which that state may change.
The theory of refinement: the mathematical data types of
specification to be implemented by more computer-oriented data
type in a design.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 6 / 81

What is Z Notation

We can use Z to
describe data structures.
model system state.
explain design intentions.
verify development steps.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 7 / 81

What is Z Notation

Qualitative Results

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 8 / 81

Mathematical Language

Sets
Relations
Functions
Numbers and finiteness

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 9 / 81

Mathematical Language: Sets

Set comprehension:
Given any non-empty set s, we can define a new set by
considering only those elements of s that satisfy some property
p.
Denote the set of elements x in s that satisfy predicate p.

{x : s | p}

Example: suppose that a red car is seen driving away from the
scene of a crime. If Person denotes the set of all people, then
the set to consider is given by

{x : Person | x drives a red car}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 10 / 81

Mathematical Language: Sets

Term comprehension:
We may also describe a set of objects constructed from certain
elements of a given set.
Denote the set of all expressions e such that x is drawn from s
and satisfies p.

{x : s | p • e}

Example: In order to pursue their investigation of the crime,
the authorities require a set of addresses to visit. This set is
given by

{x : Person | x drives a red car • address(x)}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 11 / 81

Mathematical Language: Sets

A comprehension without a term part is equivalent to one in
which the term is the same as the bound variable:

{x : s | p} == {x : s | p • x}

The comprehension without a predicate part is equivalent to
the one with the predicate true:

{x : s • e} == {x : s | true • e}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 12 / 81

Mathematical Language: Sets

Denote the set of expression e formed as x and y range over a
and b, respectively, and satisfy predicate p.

{x : a; y : b | p • e}

Example: an eyewitness account has established that the driver
of the red car had an accomplice, and that this accomplice left
a copy of the Daily Mail at the scene:

{x : Person; y : Person | x is associated with y
∧ x drives a red car
∧ y reads the Daily Mail • x}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 13 / 81

Mathematical Language: Sets

Power set:
If a is a set, then the set of all subsets of a is called the power
set of a, and written P a.
Example:

P {x,y} = { ∅,{x},{y},{x,y}}
{1,2,3,4} ∈ P N

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 14 / 81

Mathematical Language: Sets

Cartesian product :
If X and Y are sets, then the Cartesian product X × Y is the
set of all possible ordered pairs (x,y), where x is an element of
X and y is an element of Y :

X × Y = {(x , y) | x ∈ X and y ∈ Y }

Example:
{1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 15 / 81

Mathematical Language: Sets

Types :
A type is a maximal set, at least within the confines of the
current specification.
The Z notation has a single built-in type: the set of all integers
Z:

Z = {...,-3,-2,-1,0,1,2,3,...}
Any other types may be constructed from Z, or from
user-defined basic types.
Every expression that appears in Z specification is associated
with a unique type, and if the expression is defined, then the
value of the expression is a member of its type.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 16 / 81

Mathematical Language: Relations

Binary relations
Denotes the set of all relations between X and Y:

X ↔ Y == P(X × Y)

Maplet
The pair (x,y) can be written as x 7→ y.

[X ,Y]
7→ : X × Y → X × Y

∀ x : X ; y : Y • x 7→ y = (x , y)

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 17 / 81

Mathematical Language: Relations

drives : Drivers ↔ Cars

drives = {helen 7→ beetle, indra 7→ alfa, jim 7→ beetle,
kate 7→ cortina}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 18 / 81

Mathematical Language: Relations

Domain and Range

domR = {x : X ; y : Y | x 7→ y ∈ R • x}

ranR = {x : X ; y : Y | x 7→ y ∈ R • y}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 19 / 81

Mathematical Language: Relations
Domain and Range Example: Function-Drives

dom drives = {helen, indra, jim, kate}

ran drives = {alfa, beetle, cortina}
Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 20 / 81

Mathematical Language: Relations

Domain Subtraction

A −▹ R = {x : X ; y : Y | x 7→ y ∈ R ∧ x /∈ A • x 7→ y}

An example of domain subtraction
If we are concerned only with people who are not called
’Helen’, then the relation {Henlen} −▹ Drives tells us all that
we want to know. It is a relation with three elements:

{Indra 7→ alfa, Jim 7→ beetle,Kate 7→ cortina}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 21 / 81

Mathematical Language: Relations

Domain domR = {x : X ; y : Y | x 7→ y ∈ R • x}
Range ranR = {x : X ; y : Y | x 7→ y ∈ R • y}
Domain Restriction
A ▹ R = {x : X ; y : Y | x 7→ y ∈ R ∧ x ∈ A • x 7→ y}
Range Restriction
R ◃ B = {x : X ; y : Y | x 7→ y ∈ R ∧ y ∈ B • x 7→ y}
Domain Subtraction
A −▹ R = {x : X ; y : Y | x 7→ y ∈ R ∧ x /∈ A • x 7→ y}
Range Subtraction
R −◃ B = {x : X ; y : Y | x 7→ y ∈ R ∧ y /∈ B • x 7→ y}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 22 / 81

Mathematical Language: Functions

Partial functions
From X to Y is a relation that maps each element of X to at
most one element of Y. The element of Y, if it exists, is
written f(x).

X 7→ Y == {f : X ↔ Y | ∀ x : X ; y1, y2 : Y •
(x 7→ y1) ∈ f ∧ (x 7→ y2) ∈ f ⇒ y1 = y2}

Total functions
The set of total functions are partial functions whose domain is
the whole of X. They relate each element of X to exactly one
element of Y.

X → Y == {f : X 7→ Y | dom f = X}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 23 / 81

Mathematical Language: Functions

Partial Functions: each element of the source set is mapped to
at most one element of the target.
Total Functions: each element of the source set is mapped to
some element of the target.
Injective (1 to 1): each element of the domain is mapped to a
different element of the target.

7� : partial, injective functions
� : total, injective functions

Surjective (onto): the range of the function is the whole of the
target

7→→ : partial, surjective functions
→→ : total, surjective functions

Bijective (1 to 1 correspondence): both injective and surjective
�→ : total, bijective functions

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 24 / 81

Mathematical Language: Functions

Overriding
If f and g are functions of the same type, then f ⊕ g is a
function that agrees with f everywhere outside the domain of
g ; but agrees with g where g is defined.

[X ,Y]
⊕ : (X ↔ Y)× (X ↔ Y) → (X ↔ Y)

∀ f , g : X ↔ Y •
f ⊕ g = (dom g −▹ f) ∪ g

names ′ = names ⊕ {i 7→ v}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 25 / 81

Overriding

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 26 / 81

Overriding

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 27 / 81

Overriding

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 28 / 81

Mathematical Language: Numbers and finiteness

Natural numbers

N == {n : Z | n ≥ 0}

Strictly positive integers

N1 == N\{0}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 29 / 81

Agenda

What Is Formal Specification
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book
Strengthening the Specification
Implementing the Birthday Book

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 30 / 81

Schema Language

We can write the text of a schema in one of two the following two
forms:

Name
declaration

constraint

or

Name =̂ [declaration | constraint]

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 31 / 81

Schema Language

Name =̂ [a : Z; c : PZ | c ̸= ϕ ∧ a ∈ c]

Name
a : Z
c : PZ
c ̸= ϕ
a ∈ c

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 32 / 81

Schema Language

We can use the language of schemas to describe the state of a
system, and operation upon it.
Suppose that the state of a system is modeled by the following
schema

State
a : A
b : B

P

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 33 / 81

Schema Language

To describe an operation upon the state, we use two copies of
State: one representing the state before the operation; the other
representing the state afterwards.

State ′
a′ : A
b′ : B

P [a′/a, b′/b]

The constraint part of the schema is modified to reflect the new
names of the state variables.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 34 / 81

Schema Language

Then we can describe an operation by including both State and
State’ in the declaration part of a schema. For example,

Operation
State
State ′
i? : I
o! : O

. . .

The behavior of the operation is described in the constraint part of
the schema.
Note that the schema also includes an input component of type I
and an output component of type O.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 35 / 81

Schema Language

When a schema name appears in a declaration part of a schema, the
result is a merging of declarations and a conjunction of constraints.

OperationOne
State
State ′

OperationTwo
a, a′ : A
b, b′ : B

P
P [a′/a, b′/b]

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 36 / 81

Schema Language

∆ Schema can be applied whenever we wish to describe an
operation that may change the state.

∆ Schema
Schema
Schema′

Ξ Schema can be applied whenever we wish to describe an
operation that does not change the state.

Ξ Schema
∆ Schema

θ Schema = θ Schema′

Note: θ here means the valuation of variables in the schema.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 37 / 81

Schema Language

Different aspects of the state can be described as separate
schemas; these schemas may be combined in various ways
using schema operators:

The logical schema operators:

∧
∨
¬
∀
∃

The relational schema operators:

o
9 −Sequential composition
>>− Piping

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 38 / 81

Schema Language

If S and T are two schemas, then their conjunction S ∧ T is a
schema

whose declaration is a merge of the two declarations.
whose constraint is a conjunction of the two constraints.

Their disjunction S ∨ T is a schema
whose declaration is a merge of the two declarations.
whose constraint is a disjunction of the two constraints.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 39 / 81

Schema Language

S
a : A
b : B

P

T
b : B
c : C

Q

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 40 / 81

Schema Language
The schema S ∧ T (conjunction) is equivalent to

S ∧ T
a : A
b : B
c : C

P ∧ Q

The schema S ∨ T (disjunction) is equivalent to

S ∨ T
a : A
b : B
c : C

P ∨ Q

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 41 / 81

Agenda

What Is Formal Specification
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book
Strengthening the Specification
Implementing the Birthday Book

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 42 / 81

The Birthday Book

Basic three functions:
Add new birthday-name record.
Find the birthday of a person.
Give a date, return names of people whose birthday is exactly
that day.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 43 / 81

The Birthday Book
Given basic types:

[NAME ,DATE]

Use a schema to describe the state of the birthday book:

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

known is the set of names with birthdays recorded.
birthday is a function when applied to certain names, gives the
birthdays associated with them.
invariant is relationship which is true in every state of the
system.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 44 / 81

The Birthday Book

One possible state of the system has three people in the set known,
with their birthdays recorded by the function birthday :

known = {Cindy ,Randy , John}
birthday =
{Cindy 7→ 7/5,
Randy 7→ 11/5,
John 7→ 6/2}.

The invariant is satisfied, because birthday records a date for
exactly the three names in known.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 45 / 81

The Birthday Book

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

BirthdayBook ′

known′ : PNAME
birthday ′ : NAME 7→ DATE

known′ = dom birthday ′

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 46 / 81

The Birthday Book

Specify an operation to add new birthday-name record:

AddBirthday
∆BirthdayBook
BirthdayBook
BirthdayBook ′

name? : NAME
date? : DATE

name? /∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 47 / 81

The Birthday Book
We can prove known′ = known ∪ {name?} from the specification of
AddBirthday , using the invariants on the state before and after the
operation:

known′

= dom birthday ′ [invariant after]
= dom(birthday ∪ {name? 7→ date?})

[spec. of AddBirthday]
= dom birthday ∪ dom {name? 7→ date?}

[fact about dom]
= dom birthday ∪ {name?} [fact about dom]
= known ∪ {name?}. [invariant before]

Note: Laws of Domain
dom{Q ∪ R} = dom{Q} ∪ dom{R}
dom{x1 7→ y1, .., x1 7→ xn} = {x1, .., xn}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 48 / 81

The Birthday Book

Find the birthday of a person:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 49 / 81

The Birthday Book

Give a date, return names of people whose birthday is exactly that
day.

Remind
ΞBirthdayBook
today? : DATE
names! : PNAME

names! = {n : known | birthday(n) = today?}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 50 / 81

The Birthday Book

To finish the specification, we must say what state the system is in
when it is first started. This is the initial state of the system, and it
also is specified by a schema:

InitBirthdayBook
BirthdayBook

known = ∅

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 51 / 81

Agenda

What Is Formal Specification
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book
Strengthening the Specification
Implementing the Birthday Book

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 52 / 81

Strengthening the Specification

A correct implementation of our specification will faithfully
record birthdays and display them, so long as there are no
mistakes in the input. But the specification has a serious flaw:

add a birthday for someone already known to the system.
find the birthday of someone not known.

The specification we have described clearly and concisely the
behavior for correct input, and modifying it to describe the
handling of incorrect input could only make it obscure.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 53 / 81

Strengthening the Specification

Better solution :
describe, separately from the first specification, the errors which
might be detected and the desired responses to them.
use schema operators (e.g., ∧, ∨) to combine the two descriptions
into a stronger specification.

Add an extra output result! to each operation on the system.
When an operation is successful, this output will take the value
ok , but it may take other values when an error is detected.
The following free type definition defines REPORT to be a set
containing exactly these three values:

REPORT ::= ok | already known | not known

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 54 / 81

Free Type

Free type adds nothing to the power of Z, but it makes it
easier to describe recursive structures such as lists and trees.
A free type T is defined as follows:

T ::= c1 | ... | cm | d1⟨⟨E1⟩⟩ | ... | dn⟨⟨En⟩⟩

where disjoint ⟨{c1}, ..., {cm}, ran d1, ..., ran dn⟩,
c1, ..., cm are constant expressions,
d1, ..., dm are constructor functions, and
E1, ..., Em are expressions that may depend on set T .

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 55 / 81

Free Type Example

Example:
The following free type definition, with seven distinct constants, is a
structure of colors of the rainbow:

Colors ::= red | orange | yellow | green | blue | indigo | violet

The following free type definition introduces a new type constructed
using a single constant zero and a single constructor function succ:

nat ::= zero | succ⟨⟨nat⟩⟩

This type has a structure which is exactly that of the natural
numbers (zero corresponds to 0, and succ corresponds to the
function +1).

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 56 / 81

Strengthening the Specification

We can define a schema Success which just specifies that the result
should be ok :

Success
result! : REPORT

result! = ok

Then we can combine AddBirthday operation with Success by
conjunction operator ∧:

AddBirthday ∧ Success

This describes an operation for correct input.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 57 / 81

Strengthening the Specification

Here is an operation which produces the report already known
when its input name? is already a member of known:

AlreadyKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? ∈ known

result! = already known

We can combine this description with the previous one to give a
specification for a robust version of AddBirthday :

RAddBirthday =̂ (AddBirthday ∧ Success) ∨ AlreadyKnown.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 58 / 81

Strengthening the Specification

RAddBirthday
∆BirthdayBook
name? : NAME
date? : DATE
result! : REPORT

(name? /∈ known ∧
birthday ′ = birthday ∪ {name? 7→ date?} ∧
result! = ok) ∨

(name? ∈ known ∧
birthday ′ = birthday ∧
result! = already known)

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 59 / 81

Strengthening the Specification

A robust version of the FindBirthday operation must be able to
report if the input name is not known:

NotKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? /∈ known

result! = not known

The robust operation either behaves as described by FindBirthday
and reports success, or reports that the name was not known:

RFindBirthday =̂ (FindBirthday ∧ Success) ∨ NotKnown.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 60 / 81

Strengthening the Specification

The Remind operation never results in an error, so the robust
version need only add the report of success.

RRemind =̂ Remind ∧ Success

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 61 / 81

Agenda

What Is Formal Specification
What Is Z Notation

Mathematical Language
Schema Language

Example: the Birthday Book
Strengthening the Specification
Implementing the Birthday Book

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 62 / 81

Implementing the Birthday Book

When a program is developed from a specification, two sorts of
design decision usually need to be taken:

The data described by mathematical data types in the specification
must be implemented by data structures of the programming
language
The operations described by predicates in the specification must be
implemented by algorithms expressed in a programming language

Refinement:
Data refinement relates an abstraction data type (e.g., sets) to a
concrete data type (e.g., arrays).
Operation refinement converts a specification of an operation on a
system into an implementable program (e.g., a procedure).

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 63 / 81

Implementing the Birthday Book

We choose to represent the birthday book with two arrays,
which might be declared by:

names: array [1..] of NAME
dates: array [1..] of DATE

These arrays can be modeled mathematically by functions from
the set N1 of strictly positive integers to NAME or DATE :

names : N1 → NAME
dates : N1 → DATE

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 64 / 81

Implementing the Birthday Book

The element names[i] of the array is simply the value names(i) of
the function, and the assignment names[i] := v is exactly described
by the specification:

names ′ = names ⊕ {i 7→ v}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 65 / 81

Implementing the Birthday Book
We describe the state space of the program as a schema. There is
another variable hwm (for ‘high water mark’); it shows how much
of the arrays is in use.

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

BirthdayBook1
names : N1 → NAME
dates : N1 → DATE
hwm : N
∀ i , j : 1..hwm • i ̸= j ⇒ names(i) ̸= names(j)

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 66 / 81

Implementing the Birthday Book

We can document this with a schema Abs (abstraction schema)
that defines the abstraction relation between the abstract state
space BirthdayBook and the concrete state space BirthdayBook1:

Abs
BirthdayBook
BirthdayBook1

known = {i : 1..hwm • names(i)}
∀ i : 1..hwm • birthday(names(i)) = dates(i)

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 67 / 81

Implementing the Birthday Book

To add a new name, we increase hwm by one, and fill in the name
and date in the arrays:

AddBirthday1
∆BirthdayBook
name? : NAME
date? : DATE

∀ i : 1..hwm • name? ̸= names(i)
hwm′ = hwm + 1
names ′ = names

⊕
{hwm′ 7→ names?}

dates ′ = dates
⊕

{hwm′ 7→ date?}

Note: Relationships of AddBirthday
name? /∈ known

birthday ′ = birthday ∪ {name? 7→ date?}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 68 / 81

Correct Implementation

Suppose Aop is a schema describing a specification and Cop is
a schema describing the action of a program. Abs relates
abstract and concrete states.
A concrete schema is a correct implementation of abstract
schema when

pre Aop ∧ Abs ⇒ pre Cop
(ensures that the concrete operation terminates whenever the
abstract operation is guaranteed to terminate)
pre Aop ∧ Abs ∧ Cop ⇒ Abs ′ ∧ Aop
(ensures that the state after the concrete operation represents one of
those abstract states in which the abstract operation could
terminate)

In this situation we shall write Spec ⊑ Ref
(The sign ‘⊑’ is the sign of refinement relation.)

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 69 / 81

Implementing the Birthday Book

To show that AddBirthday1 is a correct implementation of
AddBirthday , we have the following two proof obligations.

pre AddBirthday ∧ Abs ⇒ pre AddBirthday1
pre AddBirthday ∧ Abs ∧ AddBirthday1 ⇒ Abs ′ ∧ AddBirthday

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 70 / 81

The First Statement

The pre AddBirthday is name? /∈ known.
The pre AddBirthday1 is ∀ i : 1..hwm • names? ̸= names(i).
Abs tells us that known = {i : 1..hwm • names(i)}.
This given
name? /∈ known ∧ known = {i : 1..hwm • names(i)}
⇒ ∀ i : 1..hwm • names? ̸= names(i)
So the first proof obligation
pre AddBirthday ∧ Abs ⇒ pre AddBirthday1 is true.

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 71 / 81

The Second Statement

Think about the concrete states before and after an execution
of AddBirthday1, and the abstract states they represent
according to Abs.
The two concrete states are related by AddBirthday1, and we
must show that the two abstract states are related as
prescribed by AddBirthday :

Prove that birthday ′ = birthday ∪ {name? 7→ date?}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 72 / 81

The Second Statement (Cont’d)

The domains of these two functions are the same, because

dom birthday ′

= known′ [invariant after]
= {i : 1..hwm′ • names ′(i)} [from Abs ′]
= {i : 1..hwm • names ′(i)} ∪ {names ′(hwm′)}

[hwm′=hwm+1]
= {i : 1..hwm • names(i)} ∪ {names?}

[names ′ = names⊕ { hwm′ 7→ names?}]
= known ∪ {names?} [from Abs]
= dom birthday ∪ {names?} [invariant before]

Note: Laws of Domain
dom{x1 7→ y1, .., x1 7→ xn} = {x1, .., xn}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 73 / 81

The Second Statement (Cont’d)

There is no change in the part of arrays which was in use
before the operation.
So for all i in the range 1..hwm:

names ′(i) = names(i) ∧ dates ′(i) = dates(i)
For any i in this range,

birthday ′(names ′(i))
= dates ′(i) [from Abs ′]
= dates(i) [dates unchanged]
= birthday(names(i)) [from Abs]

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 74 / 81

The Second Statement (Cont’d)

For the new name, stored at index hwm′ = hwm + 1

birthday ′(names?)
= birthday ′(names ′(hwm′)) [names ′(hwm′) = name?]
= dates ′(hwm′) [from Abs ′]
= date? [spec. of Addbirthday1]

The second proof obligation
pre AddBirthday ∧Abs ∧AddBirthday1 ⇒ Abs ′ ∧AddBirthday
is also true.
It shows that both of the proof obligation is true, so we can
conclude that AddBirthday1 is a correct implementation of
AddBirthday .

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 75 / 81

Refinement of the Birthday Book

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 76 / 81

Implementing the Birthday Book
The second operation, FindBirthday , is implemented by the
following operation, again described in terms of the concrete state:

FindBirthday1
ΞBirthdayBook
name? : NAME
date! : DATE

∃ i : 1..hwm • name? = names(i) ∧ date! = dates(i)

Check the pre-conditions and output

date! = dates(i) [spec. of FindBirthday1]
= birthday(names(i)) [from Abs]
= birthday(name?) [spec. of FindBirthday1]

Note: Relationships of FindBirthday
name? ∈ known
date! = birthday(name?)

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 77 / 81

Implementing the Birthday Book

The operation Remind poses a new problem, because its output
cards is a set of names. Here is a schema AbsCards that defines
the abstraction relation:

AbsCards
cards : PNAME
cardlist : N1 → NAME
ncards : N
cards = {i : 1..ncards • cardlist(i)}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 78 / 81

Implementing the Birthday Book

The concrete operation can now be described: it produces as
outputs cardlist and ncards:

Remind1
ΞBirthdayBook1
today? : DATE
cardlist! : N1 → NAME
ncards! : N
{i : 1..ncards! • cardlist!(i)}
= {j : 1..hwm | dates(j) = today? • names(j)}

Note: Relationships of Remind
names! = {n : known | birthday(n) = today?}

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 79 / 81

Implementing the Birthday Book

The initial state of the program has hwm = 0:

InitBirthdayBook1
BirthdayBook1

hwm = 0

known
= {i : 1..hwm • names(i)} [from Abs]
= {i : 1..0 • names(i)} [from InitBirthdayBook1]
= ∅ [1..0 = ∅]

Note: Relationships of InitBirthdayBook
known = ∅

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 80 / 81

Thank you for listening

Jing-Jie Lin (NTU@IM) An Introduction to the Z Notation November 25, 2010 81 / 81

