
Hoare Logic (II):
Procedures

(Based on [Gries 1981; Slonneger and Kurtz 1995])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 1 / 15



Non-recursive Procedures

We first consider procedures with call-by-value parameters (and
global variables).

Syntax:
proc p(in x); S

where x may be a list of variables, S does not contain p, and S
does not change x .

Inference rule:

{P} S {Q}
{P[a/x ] ∧ I} p(a) {Q[a/x ] ∧ I}

where a may not be a global variable changed by S and I does
not refer to variables changed by S .

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 2 / 15



How It May Go Wrong

Example: proc p(in x); b := 2x ;

Below is an incorrect usage of the rule

{x = 1} b := 2x {b = 2 ∧ x = 1}
{(x = 1)[b/x ]} p(b) {(b = 2 ∧ x = 1)[b/x ]}

since the conclusion is not valid

{b = 1} p(b) {b = 2 ∧ b = 1}.

The inference rule cannot be applied, because the global variable
b is changed by procedure p.

The problem is that x becomes an alias of b in the invocation
p(b), while {x = 1} b := 2x {b = 2 ∧ x = 1} does not take this
into account.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 3 / 15



Non-recursive Procedures (cont.)

We now consider procedures with call-by-value,
call-by-value-result, and call-by-result parameters.

Syntax:
proc p(in x ; in out y ; out z); S

where x , y , z may be lists of variables, S does not contain p, and
and S does not change x .

Inference rule:

{P} S {Q}
{P[a, b/x , y ] ∧ I )} p(a, b, c) {Q[b, c/y , z ] ∧ I}

where b, c are (lists of) distinct variables, a, b, c may not be
global variables changed by S , and I does not refer to variables
changed by S .

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 4 / 15



Non-recursive Procedures (cont.)

Using wp, one can justify the rule with the understanding that
“p(a, b, c)” is equivalent to “x , y := a, b; S ; b, c := y , z”.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 5 / 15



Recursive Procedures

A rule for recursive procedures without parameters:

{P} p() {Q} ` {P} S {Q}
` {P} p() {Q}

where p is defined as “proc p(); S”.

A rule for recursive procedures with parameters:

∀v({P[v/x ]} p(v) {Q[v/x ]}) ` {P} S {Q}
` {P[a/x ]} p(a) {Q[a/x ]}

where p is defined as “proc p(in x); S” and a may not be a
global variable changed by S .

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 6 / 15



An Example
proc nonzero();
begin

read x ;
if x = 0 then nonzero() fi;

end

The semantics of “read x” is defined as follows:

{IN = v · L ∧ P[v/x ]} read x {IN = L ∧ P}

where v is a single value and L is a stream of values.

We wish to prove the following:

{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
nonzero();
{IN = L ∧ x = n ∧ n 6= 0} // {Q}

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 7 / 15



An Example (cont.)

It amounts to proving the following annotation:

proc nonzero();
begin
{IN = Z · n · L ∧ “Z contains only zeros” ∧ n 6= 0} // {P}
read x ;
if x = 0 then nonzero() fi;
{IN = L ∧ x = n ∧ n 6= 0} // {Q}

end

The first step is to find a suitable assertion R between “read x”
and the “if” statement.

For this, we consider two cases: (1) Z is empty and (2) Z is not
empty.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 8 / 15



An Example (cont.)

Case 1: Z is empty
{IN = n · L ∧ n 6= 0}
read x
{IN = L ∧ x = n ∧ n 6= 0}

Case 2: Z is not empty
{IN = 0 · Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0}
read x
{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}

Applying the Disjunction rule, we get a suitable R :

(IN = L ∧ x = n ∧ n 6= 0)∨
(IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0)

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 9 / 15



An Example (cont.)

We now have to prove the following:

{R} if x = 0 then nonzero() fi {IN = L ∧ x = n ∧ n 6= 0}

From the Conditional rule, this breaks down to

{R ∧ x = 0} nonzero() {IN = L ∧ x = n ∧ n 6= 0}
(R ∧ x 6= 0)→ (IN = L ∧ x = n ∧ n 6= 0) (obvious)

The first case involving the recursive call simplifies to

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0 ∧ x = 0}
nonzero()
{IN = L ∧ x = n ∧ n 6= 0}

The precondition is stronger than we need and x = 0 can be
removed.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 10 / 15



An Example (cont.)

Finally, we are left with the following proof obligation:

{IN = Z ′ · n · L ∧ “Z ′ contains only zeros” ∧ n 6= 0}
nonzero()
{IN = L ∧ x = n ∧ n 6= 0}

The induction hypothesis gives us exactly the above.

And, this completes the proof.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 11 / 15



Termination of Recursive Procedures

Consider the previous recursive procedure again.
proc nonzero();
begin

read x ;
if x = 0 then nonzero() fi;

end

Given an input of the form IN = L1 · n · L2, where L1 contains
only zero values and n 6= 0, the command “nonzero()” will halt.

We prove this by induction on the length of L1.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 12 / 15



Proving Termination by Induction

Basis: length(L1) = 0

The input has the form IN = n · L2, where n 6= 0.
After “read x”, x 6= 0.
The boolean test x = 0 does not pass and the procedure call
terminates.

Induction step: length(L1) = k > 0

Hypothesis: nonzero() halts when length(L1) = k − 1 ≥ 0.
Let L1 = 0 · L′

1.
The call nonzero() is invoked with IN = 0 · L′

1 · n · L2, where L′
1

contains only zero values and n 6= 0.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 13 / 15



Proving Termination by Induction (cont.)

Induction step (cont.)

After “read x”, x = 0.
This boolean test x = 0 passes and a second call nonzero() is
invoked inside the if statement.
The second nonzero() is invoked with L′

1 · n · L2, where L′
1

contains only zero values and n 6= 0
Since length(L′

1) = k − 1, termination is guaranteed by the
hypothesis.

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 14 / 15



Proving Termination by Induction (cont.)

A rule for proving termination of recursive procedures:

{∃u : W (u < T ∧ P(u))} p() {Q} ` {P(T )} S {Q}
` {∃t : W (P(t))} p() {Q}

where

(W , <) is a well-founded set,
p is defined as “proc p(); S”, and
T is a “rigid” variable that ranges over W and does not occur
in P, Q, or S .

Yih-Kuen Tsay (IM.NTU) Hoare Logic (II): Procedures SSV 2011 15 / 15


	Non-recursive Procedures
	Recursive Procedures
	Termination of Recursive Procedures

