Suggested Solutions for Homework Assignment \#2

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: $\neg,\{\forall, \exists\},\{\wedge, \vee\}, \rightarrow, \leftrightarrow, \vdash$.

1. Prove, using Natural Deduction, the validity of the following sequents:
(a) $\forall x(P(x) \rightarrow Q(x)) \vdash \forall x P(x) \rightarrow \forall x Q(x)$

Solution. Assume w does not occur free either in $P(x)$ or in $Q(x)$.

$$
\left.{\frac{\alpha}{} \quad \frac{\frac{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x P(x)}{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash P(w)}_{(}(\forall y)}{(\forall y)}(\rightarrow E)}_{\frac{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash Q(w)}{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)}}(\forall I)\right)(\rightarrow I)
$$

$\alpha:$
(b) $\vdash \exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y)$

Solution. Assume both w and z do not occur free in $P(x, y)$.
(c) $\forall x(A(x) \rightarrow B) \vdash \exists x A(x) \rightarrow B$, assuming x does not occur free in B.

Solution. Assume w does not occur free either in $A(x)$ or in B.
α :
$\beta:$

$$
\overline{\forall x(A(x) \rightarrow B), \exists x A(x), A(w) \vdash A(w)}(H y p)
$$

2. Prove, using Natural Deduction for the first-order logic with equality $(=)$, that $=$ is an equivalence relation between terms, i.e., the following are valid sequents, in addition to the obvious " $\vdash t=t$ " (Reflexivity), which follows from the $=$-Introduction rule.
(a) $t_{2}=t_{1} \vdash t_{1}=t_{2}$ (Symmetry)

Solution.

$$
\frac{\overline{t_{2}=t_{1} \vdash t_{2}=t_{1}}(H y p) \quad \overline{t_{2}=t_{1} \vdash t_{2}=t_{2}}}{t_{2}=t_{1} \vdash t_{1}=t_{2}}(=E)
$$

(b) $t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}$ (Transitivity)

Solution.

$$
\frac{\overline{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{2}=t_{3}}(\text { Hyp }) \quad \overline{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{2}}}{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}}(=E)
$$

3. Taking the preceding valid sequents as axioms, prove using Natural Deduction the following derived rules for equality.
(a) $\frac{\Gamma \vdash t_{2}=t_{1}}{\Gamma \vdash t_{1}=t_{2}}(=$ Symmetry $)$

Solution.

$$
\begin{array}{cc}
\frac{\left.\overline{\Gamma, t_{2}=t_{1} \vdash t_{1}=t_{2}}(\text { Axiom(Symmetry })\right)}{\overline{\Gamma \vdash t_{2}=t_{1} \rightarrow t_{1}=t_{2}}(\rightarrow I)} & \Gamma \vdash t_{2}=t_{1} \\
\Gamma \vdash t_{1}=t_{2} &
\end{array}(\rightarrow E)
$$

(b) $\frac{\Gamma \vdash t_{1}=t_{2} \quad \Gamma \vdash t_{2}=t_{3}}{\Gamma \vdash t_{1}=t_{3}}(=$ Transitivity $)$

Solution.

$$
\frac{\frac{\alpha \quad \Gamma \vdash t_{1}=t_{2}}{\Gamma \vdash t_{2}=t_{3} \rightarrow t_{1}=t_{3}}(\rightarrow E)}{\Gamma \vdash t_{1}=t_{3}} \quad \Gamma \vdash t_{2}=t_{3}(\rightarrow E)
$$

α :

$$
\begin{gathered}
\frac{{ }_{\Gamma, t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}}^{\Gamma, t_{1}=t_{2} \vdash t_{2}=t_{3} \rightarrow t_{1}=t_{3}}(\rightarrow I)}{\Gamma \vdash t_{1}=t_{2} \rightarrow\left(t_{2}=t_{3} \rightarrow t_{1}=t_{3}\right)}(\rightarrow I) \\
(\rightarrow I)
\end{gathered}
$$

4. Prove, using Coq, the validity of the following sequents. You may either print out the Coq proofs or email them to the instructor.
(a) $\vdash(p \vee q \rightarrow r) \rightarrow(p \rightarrow r) \wedge(q \rightarrow r)$
(b) $\vdash(p \rightarrow(q \rightarrow r)) \rightarrow(p \wedge q \rightarrow r)$
(c) $\vdash(\neg p \vee q) \rightarrow(p \rightarrow q)$

Solution. To be completed.

