
Software Specification and Verification [Compiled on January 3, 2021] Fall 2020

Suggested Solutions for Homework Assignment #4

We assume the binding powers of the logical connectives and the entailment symbol decrease
in this order: ¬, {∀, ∃}, {∧, ∨}, →, ↔, `.

1. Prove that the following annotated program segments are correct:

(a) (10 points)

{true}
if x < y then x, y := y, x fi
{x ≥ y}

Solution.

pred. calculus + algebra

true ∧ x < y → y ≥ x
(Assign)

{ y ≥ x } x, y := y, x { x ≥ y }
(SP)

{ true ∧ x < y } x, y := y, x { x ≥ y }
pred. calculus + algebra

true ∧ ¬(x < y)→ x ≥ y
(If-Then)

{ true } if x < y then x, y := y, x fi { x ≥ y }

(b) (10 points)

{g = 0 ∧ p = n ∧ n ≥ 1}
while p ≥ 2 do

g, p := g + 1, p− 1
od
{g = n− 1}
Solution.

pred. calculus + algebra

g = 0 ∧ p = n ∧ n = 1→ p > 0 ∧ p+ g = n α

pred. calculus + algebra

p > 0 ∧ p+ g = n ∧ ¬(p ≥ 2)→ g = n− 1
(Consequence)

{ g = 0 ∧ p = n ∧ n = 1 } while p ≥ 2 do g, p := g − 1, p+ 1 od { g = n− 1 }
α :

β
(Assign)

{ p+ 1 > 0 ∧ (p+ 1) + (g − 1) = n } g, p := g − 1, p+ 1 { p > 0 ∧ p+ g = n }
(SP)

{ p > 0 ∧ p+ g = n ∧ p ≥ 2 } g, p := g − 1, p+ 1 { p > 0 ∧ p+ g = n }
(while)

{ p > 0 ∧ p+ g = n } while p ≥ 2 do g, p := g − 1, p+ 1 od { p > 0 ∧ p+ g = n ∧ ¬(p ≥ 2) }
β :

pred. calculus + algebra

p > 0 ∧ p+ g = n ∧ p ≥ 2→ p+ 1 > 0 ∧ (p+ 1) + (g − 1) = n

(c) (20 points) For this program, prove its total correctness.

{y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

x := x− y
od
{(x ≡ m (mod y)) ∧ x < y}

1



Solution.

α

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ ¬(x ≥ y)→ (x ≡ m (mod y)) ∧ x < y
(SP)

{ y > 0 ∧ (x ≡ m (mod y)) } while x ≥ y do x := x− y od { (x ≡ m (mod y)) ∧ x < y }
α :

β γ

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y → x ≥ 0
(while: simply total)

{ y > 0 ∧ (x ≡ m (mod y)) }
while x ≥ y do x := x− y od

{ y > 0 ∧ (x ≡ m (mod y)) ∧ ¬(x ≥ y) }
β :

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y →
y > 0 ∧ ((x− y) ≡ m (mod y))

(Assign)
{ y > 0 ∧ ((x− y) ≡ m (mod y)) }

x := x− y
{ y > 0 ∧ (x ≡ m (mod y)) }

(SP)
{ y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y } x := x− y { y > 0 ∧ (x ≡ m (mod y)) }

γ :

pred. calculus + algebra

y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y ∧ x = Z → x− y < Z
(Assign)

{ x− y < Z } x := x− y { x < Z }
(SP)

{ y > 0 ∧ (x ≡ m (mod y)) ∧ x ≥ y ∧ x = Z } x := x− y { x < Z }

2. A majority of an array of n elements is an element that has more than n
2 occurrences

in the array. Below is a program that finds the majority of an array X of n elements
or determines its non-existence. (Hint: if A[i] 6= A[j], then the majority of A remains a
majority in a new array B obtained from A by removing A[i] and A[j]. Check out Udi
Manber’s algorithms book if you cannot understand the program.)

C,M := X[1],1;

i := 2;

while i<=n do

if M=0 then C,M := X[i],1

else if C=X[i] then M := M+1

else M := M-1

fi

fi;

i := i+1

od;

if M=0 then Majority := -1

else Count := 0;

i := 1;

while i<=n do

if X[i]=C then Count := Count+1 fi;

i := i+1

od;

if Count>n/2 then Majority := C

else Majority := -1

fi

fi

2



(a) (30 points) Annotate the program into a standard proof outline, showing clearly
the partial correctness of the program; a standard proof outline is essentially an
annotated program where every statement is surrounded by a pair of pre- and post-
conditions.

Solution. As stated in the hint, the correctness of the code relies on the idea that, if
two different elements are removed from an array A, the majority in A, if it exists,
remains a majority in the remaining part B of array A. However, the majority in
B may not be a majority in A, as an element might become the “majority” after
two elements different from that element are removed. The repeated removals of
two different elements are accomplished in the code by keeping a candidate (namely
C, which may change over time) and counting its occurrences and, when a differ-
ent element is encountered, the recorded number (namely M) of occurrences of the
candidate is decremented to cancel out with the encountered element. The “remain-
ing part” of X should be taken as the elements not yet scanned, i.e., elements in
X[i..n], plus the occurrences of the candidate, recorded in C and M , that await to
be cancelled out.

Let cnt(a,A) denote the number of occurrences of element a in an array A. Element

a is the majority of A if cnt(a,A) > |A|
2 or 2cnt(a,A) > |A|, where |A| represents the

number of elements in A. Let isMaj (a,A) represent 2cnt(a,A) > |A|, asserting that
a is the majority of A, and hasMaj (A) represent ∃a(isMaj (a,A)), asserting that A
has a majority.

“If X has a majority, then the remaining part has a majority” is a loop invariant
of the first while loop which carries out the removals of pairs of different elements
while keeping a candidate. This can be stated as “hasMaj (X) → ∃a((C = a ∧
2(cnt(a,X[i..n])+M) > (M+n−i+1))∨(C 6= a∧2cnt(a,X[i..n]) > (M+n−i+1)))”,
where (M + n− i + 1) equals the number of elements in the remaining part. Let us
abbreviate this invariant as majPreserved(X, i, C,M). The invariant is in the form
of an implication, the contrapositive of which says that, if the remaining part of X
does not have a majority, then X does not have a majority.

1 // assume n ≥ 1, which is preserved by the code and will be omitted later
2 C,M := X[ 1 ] , 1 ;
3 // C = X[1] ∧M = 1
4 i := 2 ;
5 // (2 ≤ i ≤ n + 1) ∧M ≥ 0 ∧majPreserved(X, i, C,M)
6 while i<=n do
7 // (2 ≤ i ≤ n) ∧M ≥ 0 ∧majPreserved(X, i, C,M)
8 i f M=0 then
9 // (2 ≤ i ≤ n) ∧M = 0 ∧majPreserved(X, i, C,M)

10 C,M := X[ i ] , 1
11 else
12 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i, C,M)
13 i f C=X[ i ] then
14 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i, C,M) ∧ C = X[i]
15 M := M+1
16 else
17 // (2 ≤ i ≤ n) ∧M > 0 ∧majPreserved(X, i, C,M) ∧ C 6= X[i]
18 M := M−1
19 f i

3



20 f i ;
21 // (2 ≤ i ≤ n) ∧M ≥ 0 ∧majPreserved(X, i + 1, C,M)
22 i := i+1
23 od ;
24 // M ≥ 0 ∧majPreserved(X,n + 1, C,M)
25 i f M=0 then
26 // ¬hasMaj (X)
27 Major ity := −1
28 else
29 // hasMaj (X)→ isMaj (C,X)
30 Count := 0 ;
31 // hasMaj (X)→ isMaj (C,X) ∧ Count = 0
32 i := 1 ;
33 // hasMaj (X)→ isMaj (C,X) ∧Count = cnt(C,X[1..i− 1]) ∧ (1 ≤ i ≤ n + 1)
34 while i<=n do
35 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..i− 1]) ∧ (1 ≤ i ≤ n)
36 i f X[ i ]=C then
37 // hasMaj (X) → isMaj (C,X) ∧ Count = cnt(C,X[1..i − 1]) ∧ (1 ≤ i ≤

n) ∧X[i] = C
38 Count := Count+1 f i ;
39 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..i]) ∧ (1 ≤ i ≤ n)
40 i := i+1
41 od ;
42 // hasMaj (X)→ isMaj (C,X) ∧ Count = cnt(C,X[1..n])
43 i f Count>n/2 then
44 // isMaj (C,X)
45 Major ity := C
46 else
47 // ¬hasMaj (X)
48 Major ity := −1
49 f i
50 f i
51 // (Majority = C ∧ isMaj (C,X)) ∨ (Majority = −1 ∧ ¬hasMaj (X))

(b) (30 points) Prove the validity of the annotation for the first while loop.

Solution. Left as an exercise.

4


