Suggested Solutions for Homework Assignment \#5

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: $\neg,\{\forall, \exists\},\{\wedge, \vee\}, \rightarrow, \leftrightarrow, \vdash$.

1. (40 points) Prove that
(a) $\models\{p\} S\{q\}$ iff $p \rightarrow w \operatorname{lp}(S, q)$ and
(b) $\models\{w \operatorname{lp}(S, q)\} S\{q\}$
which we claimed when proving the completeness of System $P D$ (for the validity of a Hoare triple with partial correctness semantics).
Here, assuming a sufficiently expressive assertion language, $w l p(S, q)$ denotes the assertion p such that $\llbracket p \rrbracket=w \operatorname{lp}(S, \llbracket q \rrbracket)$, where $\llbracket p \rrbracket$ is defined as $\{\sigma \in \Sigma \mid \sigma \models p\}$ (i.e., the set of states where p holds) and $w \operatorname{lp}(S, \Phi)$ as $\{\sigma \in \Sigma \mid \mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \Phi\}$. Recall that, for $\sigma \in \Sigma, \mathcal{M} \llbracket S \rrbracket(\sigma)=\left\{\tau \in \Sigma \mid\langle S, \sigma\rangle \rightarrow^{*}\langle E, \tau\rangle\right\}, \mathcal{M} \llbracket S \rrbracket(\perp)=\emptyset$, and, for $X \subseteq \Sigma \cup\{\perp\}$, $\mathcal{M} \llbracket S \rrbracket(X)=\bigcup_{\sigma \in X} \mathcal{M} \llbracket S \rrbracket(\sigma)$.
Solution. Recall that $\models\{p\} S\{q\}$ is defined by $\mathcal{M} \llbracket S \rrbracket(\llbracket p \rrbracket) \subseteq \llbracket q \rrbracket$. Note also that, with the assumed expressive assertion language, we can equate a set of states that may arise in applying $w l p(S, \llbracket \cdot \rrbracket)$ to some assertion with some other assertion expressible in the same assertion language.
(a)
$\vDash\{p\} S\{q\}$
iff \{Definition of the validity of a Hoare triple \}
$\mathcal{M} \llbracket S \rrbracket(\llbracket p \rrbracket) \subseteq \llbracket q \rrbracket$
iff $\quad\{$ Definition of $\mathcal{M} \llbracket S \rrbracket(X)\}$
$\left(\bigcup_{\sigma \in \llbracket p \rrbracket} \mathcal{M} \llbracket S \rrbracket(\sigma)\right) \subseteq \llbracket q \rrbracket$
iff $\quad\left\{\left(\cup_{x \in X} T(x)\right) \subseteq U\right.$ iff for every $x, x \in X$ implies $\left.T(x) \subseteq U\right\}$
for every $\sigma \in \Sigma, \sigma \in \llbracket p \rrbracket$ implies $\mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \llbracket q \rrbracket$
iff $\quad\{$ Restatement of $\mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \llbracket q \rrbracket\}$
for every $\sigma \in \Sigma, \sigma \in \llbracket p \rrbracket$ implies $\sigma \in\{\sigma \in \Sigma \mid \mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \llbracket q \rrbracket\}$
iff $\quad\{$ Definition of $\subseteq\}$
$\llbracket p \rrbracket \subseteq\{\sigma \in \Sigma \mid \mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \llbracket q \rrbracket\}$
iff $\{$ Definition of $w l p(S, \llbracket q \rrbracket)\}$
$\llbracket p \rrbracket \subseteq w l p(S, \llbracket q \rrbracket)$
iff $\quad\{$ Definitions of $\llbracket p \rrbracket$ and $w \operatorname{lp}(S, q)\}$
$\{\sigma \in \Sigma \mid \sigma \models p\} \subseteq\{\sigma \in \Sigma \mid \sigma \models w l p(S, q)\}$
iff $\quad\{$ Definition of $\subseteq\}$
for every $\sigma \in \Sigma, \sigma \models p$ implies $\sigma \models w l p(S, q)$
iff $\{$ Definition of \rightarrow \}
for every $\sigma \in \Sigma, \sigma \models p \rightarrow w l p(S, q)$
iff $\{$ Validity rewritten in a conventional simpler way \}
$p \rightarrow w l p(S, q)$
(b)
```
    \(\vDash\{w l p(S, q)\} S\{q\}\)
    iff \(\quad\{\) Definitions of \(w l p(S, q)\) and the validity of a Hoare triple \}
    \(\mathcal{M} \llbracket S \rrbracket(w l p(S, \llbracket q \rrbracket)) \subseteq \llbracket q \rrbracket\)
    iff \(\quad\{\) Definition of \(\mathcal{M} \llbracket S \rrbracket(X)\}\)
    \(\left(\cup_{\sigma \in w l p(S, \llbracket q \rrbracket)} \mathcal{M} \llbracket S \rrbracket(\sigma)\right) \subseteq \llbracket q \rrbracket\)
    iff \(\quad\left\{\left(\bigcup_{x \in X} T(x)\right) \subseteq U\right.\) iff for every \(x, x \in X\) implies \(\left.T(x) \subseteq U\right\}\)
    for every \(\sigma \in \Sigma, \sigma \in w l p(S, \llbracket q \rrbracket)\) implies \(\mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \llbracket q \rrbracket\)
iff \(\quad\{\) Restatement of \(\mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \llbracket q \rrbracket\}\)
    for every \(\sigma \in \Sigma, \sigma \in w l p(S, \llbracket q \rrbracket)\) implies \(\sigma \in\{\sigma \in \Sigma \mid \mathcal{M} \llbracket S \rrbracket(\sigma) \subseteq \llbracket q \rrbracket\}\)
iff \(\quad\{\) Definition of \(w l p(S, \llbracket q \rrbracket)\}\)
    for every \(\sigma \in \Sigma, \sigma \in w l p(S, \llbracket q \rrbracket)\) implies \(\sigma \in w l p(S, \llbracket q \rrbracket)\)
iff \(\quad\{A \rightarrow A\) iff true \(\}\)
    true
```

2. (40 points) The following fundamental properties are usually taken as axioms for the predicate transformer $w p$ (weakest precondition):

- Law of the Excluded Miracle: $w p(S$, false $) \equiv$ false.
- Distributivity of Conjunction: $w p\left(S, Q_{1}\right) \wedge w p\left(S, Q_{2}\right) \equiv w p\left(S, Q_{1} \wedge Q_{2}\right)$.
- Distributivity of Disjunction for deterministic S : $w p\left(S, Q_{1}\right) \vee w p\left(S, Q_{2}\right) \equiv$ $w p\left(S, Q_{1} \vee Q_{2}\right)$.

From the axioms (plus the usual logical and algebraic laws), derive the following properties of $w p$ (Hint: not every axiom is useful):
(a) Law of Monotonicity: if $Q_{1} \Rightarrow Q_{2}$, then $w p\left(S, Q_{1}\right) \Rightarrow w p\left(S, Q_{2}\right)$.

Solution.

```
    \(w p\left(S, Q_{1}\right)\)
    \(\equiv \quad\left\{Q_{1} \Rightarrow Q_{2}\right.\), i.e., \(\left.Q_{1} \equiv Q_{1} \wedge Q_{2}\right\}\)
    \(w p\left(S, Q_{1} \wedge Q_{2}\right)\)
    \(\equiv \quad\{\) Distributivity of Conjunction \(\}\)
    \(w p\left(S, Q_{1}\right) \wedge w p\left(S, Q_{2}\right)\)
\(\Rightarrow \quad\{A \wedge B \rightarrow B\}\)
    \(w p\left(S, Q_{2}\right)\)
```

(b) Distributivity of Disjunction (for any command): $w p\left(S, Q_{1}\right) \vee w p\left(S, Q_{2}\right) \Rightarrow$ $w p\left(S, Q_{1} \vee Q_{2}\right)$.
Solution.

```
        \(w p\left(S, Q_{1}\right) \vee w p\left(S, Q_{2}\right)\)
\(\Rightarrow \quad\left\{Q_{1} \Rightarrow Q_{1} \vee Q_{2}, Q_{2} \Rightarrow Q_{1} \vee Q_{2}\right.\), Monotonicity of \(\left.w p\right\}\)
    \(w p\left(S, Q_{1} \vee Q_{2}\right) \vee w p\left(S, Q_{1} \vee Q_{2}\right)\)
\(\equiv \quad\{A \vee A \equiv A\}\)
    \(w p\left(S, Q_{1} \vee Q_{2}\right)\)
```

3. (20 points) Prove that $\vdash\{a>b\} \max (a, b, c)\{c=a\}$, given the following declaration:
```
proc max(in }x\mathrm{ ; in }y\mathrm{ ; out z);
```

 if \(x<y\) then
 $$
\begin{gathered}
z:=y \\
\text { else } z:=x ;
\end{gathered}
$$

Solution.

$$
\begin{gathered}
\frac{\text { pred. calculus }+ \text { algebra }}{x>y \wedge x<y \rightarrow y=x} \quad \overline{\{y=x\} z:=y\{z=x\}} \\
\frac{\{x>y \wedge x<y\} z:=y\{z=x\}}{\text { (assignment) }} \text { (stren. pre.) } \quad \alpha \\
\frac{\{x>y\} \text { if } x<y \text { then } z:=y \text { else } z:=x\{z=x\}}{\{a>b\} \max (a, b, c)\{c=a\}} \text { (conditional) } \\
\text { (procedure) }
\end{gathered}
$$

α :

$$
\frac{\frac{\text { pred. calculus + algebra }}{x>y \wedge \neg(x<y) \rightarrow x=x} \quad \frac{}{\{x=x\} z:=x\{z=x\}}}{\{x>y \wedge \neg(x<y)\} z:=x\{z=x\}} \text { (assignment) } \text { (stren. pre.) }
$$

