Propositional Logic

(Based on [Gallier 1986], [Goubault-Larrecq and Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Introduction

Logic concerns two concepts:
, truth (in a specific or general context)

* provability (of truth from assumed truth)

Formal (symbolic) logic approaches logic by rules for manipulating symbols:
\% syntax rules: for writing statements (or formulae).
(There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)

* inference rules: for obtaining true statements from other true statements.
We shall introduce two main branches of formal logic:
, propositional logic
*) first-order logic (predicate logic/calculus)
The following slides cover propositional logic.

Propositions

A proposition is a statement that is either true or false such as the following:
Leslie is a teacher.
Leslie is rich.
Leslie is a pop singer.
Simplest (atomic) propositions may be combined to form compound propositions:

* Leslie is not a teacher.
* Either Leslie is not a teacher or Leslie is not rich.

If Leslie is a pop singer, then Leslie is rich.

Inferences

We are given the following assumptions:
Leslie is a teacher.
*) Either Leslie is not a teacher or Leslie is not rich.
If Leslie is a pop singer, then Leslie is rich.
We wish to conclude the following:
Leslie is not a pop singer.
The above process is an example of inference (deduction). Is it correct?

Symbolic Propositions

Propositions are represented by symbols, when only their truth values are of concern.

部 P : Leslie is a teacher.

* Q : Leslie is rich.
* Leslie is a pop singer.

Compound propositions can then be more succinctly written.
not P : Leslie is not a teacher.
not P or not Q : Either Leslie is not a teacher or Leslie is not rich.
有 R implies Q : If Leslie is a pop singer, then Leslie is rich.

Symbolic Inferences

We are given the following assumptions:
. P (Leslie is a teacher.)
not P or not Q (Either Leslie is not a teacher or Leslie is not rich.)
\% R implies Q (If Leslie is a pop singer, then Leslie is rich.)

- We wish to conclude the following:

番 not R (Leslie is not a pop singer.)
Correctness of the inference may be checked by asking:
淃 Is $(P$ and (not P or not Q) and $(R$ implies $Q)$) implies (not R) a tautology (valid formula)?
\% Or, is $(A$ and (not A or not $B)$ and (C implies $B)$) implies (not C) a tautology (valid formula)?

Propositional Logic: Syntax

- Vocabulary:

A countable set \mathcal{P} of proposition symbols (variables):
P, Q, R, \ldots (also called atomic propositions);
Logical connectives (operators): $\neg, \wedge, \vee, \rightarrow$, and \leftrightarrow and sometimes the constant \perp (false);

* Auxiliary symbols: "(", ")".

How to read the logical connectives:
\neg (negation): not

* \wedge (conjunction): and
, \vee (disjunction): or
, \rightarrow (implication): implies (or if ... , then ...)
组 \leftrightarrow (equivalence): is equivalent to (or if and only if)
\perp (false or bottom): false (or bottom)

Propositional Logic: Syntax (cont.)

- Propositional Formulae:
. Any $A \in \mathcal{P}$ is a formula and so is \perp (these are the "atomic" formula).
If A and B are formulae, then so are $\neg A,(A \wedge B),(A \vee B)$, $(A \rightarrow B)$, and $(A \leftrightarrow B)$.
- A is called a subformula of $\neg A$, and A and B subformulae of $(A \wedge B),(A \vee B),(A \rightarrow B)$, and $(A \leftrightarrow B)$.
- Precedence (for avoiding excessive parentheses):
$A \wedge B \rightarrow C$ means $((A \wedge B) \rightarrow C)$.
$A \rightarrow B \vee C$ means $(A \rightarrow(B \vee C))$.
$A \rightarrow B \rightarrow C$ means $(A \rightarrow(B \rightarrow C))$.
More about this later ...

About Boolean Expressions

Boolean expressions are essentially propositional formulae, though they may allow more things as atomic formulae.
Boolean expressions in various styles:
$(x \vee y \vee \bar{z}) \wedge(\bar{x} \vee \bar{y}) \wedge x$
, $(x+y+\bar{z}) \cdot(\bar{x}+\bar{y}) \cdot x$
, $(a \vee b \vee \bar{c}) \wedge(\bar{a} \vee \bar{b}) \wedge a$
etc.
Propositional formula: $(P \vee Q \vee \neg R) \wedge(\neg P \vee \neg Q) \wedge P$

Propositional Logic: Semantics

The meanings of propositional formulae may be conveniently summarized by the truth table:

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

The meaning of \perp is always F (false).
There is an implicit inductive definition in the table. We shall try to make this precise.

Truth Assignment and Valuation

The semantics of propositional logic assigns a truth function to each propositional formula.
-
Let $B O O L$ be the set of truth values $\{T, F\}$.
A truth assignment (valuation) is a function from \mathcal{P} (the set of proposition symbols) to BOOL.
Let PROPS be the set of all propositional formulae.
A truth assignment v may be extended to a valuation function \hat{v} from PROPS to BOOL as follows:

Truth Assignment and Valuation (cont.)

$$
\begin{aligned}
\hat{v}(\perp) & =F \\
\hat{v}(P) & =v(P) \text { for all } P \in \mathcal{P} \\
\hat{v}(P) & =\text { as defined by the table below, otherwise }
\end{aligned}
$$

$\hat{v}(A)$	$\hat{v}(B)$	$\hat{v}(\neg A)$	$\hat{v}(A \wedge B)$	$\hat{v}(A \vee B)$	$\hat{v}(A \rightarrow B)$	$\hat{v}(A \leftrightarrow B)$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

So, the truth value of a propositional formula is completely determined by the truth values of its subformulae.

Truth Assignment and Satisfaction

We say $v \vDash A(v$ satisfies $A)$ if $\hat{v}(A)=T$.- So, the symbol \models denotes a binary relation, called satisfaction, between truth assignments and propositional formulae.
$v \not \vDash A(v$ falsifies $A)$ if $\hat{v}(A)=F$.

Satisfaction

Alternatively (in a more generally applicable format), the satisfaction relation \vDash may be defined as follows:

$$
\begin{array}{lll}
v \not \models \perp & & \\
v \models P & \Longleftrightarrow & v(P)=T, \text { for all } P \in \mathcal{P} \\
v \models \neg A & \Longleftrightarrow & v \not \models A \text { (it is not the case that } v \models A \text {) } \\
v \models A \wedge B & \Longleftrightarrow & v \models A \text { and } v \models B \\
v \models A \vee B & \Longleftrightarrow & v \models A \text { or } v \models B \\
v \models A \rightarrow B & \Longleftrightarrow & v \not \models A \text { or } v \models B \\
v \models A \leftrightarrow B & \Longleftrightarrow & (v \models A \text { and } v \models B) \\
& & \text { or }(v \not \models A \text { and } v \not \models B)
\end{array}
$$

Object vs. Meta Language

The language that we study is referred to as the object language.

- The language that we use to study the object language is referred to as the meta language.
- For example, not, and, and or that we used to define the satisfaction relation \vDash are part of the meta language.

Satisfiability

A proposition A is satisfiable if there exists an assignment v such that $v \vDash A$.

潽 $v(P)=F, v(Q)=T \models(P \vee Q) \wedge(\neg P \vee \neg Q)$

- A proposition is unsatisfiable if no assignment satisfies it. , $(\neg P \vee Q) \wedge(\neg P \vee \neg Q) \wedge P$ is unsatisfiable.
The problem of determining whether a given proposition is satisfiable is called the satisfiability problem.

Tautology and Validity

-

A proposition A is a tautology if every assignment satisfies A, written as $\models A$.
$\vDash A \vee \neg A$
$\vDash(A \wedge B) \rightarrow(A \vee B)$
The problem of determining whether a given proposition is a tautology is called the tautology problem.
A proposition is also said to be valid if it is a tautology.
So, the problem of determining whether a given proposition is valid (a tautology) is also called the validity problem.

Note: the notion of a tautology is restricted to propositional logic. In first-order logic, we also speak of valid formulae.

Validity vs. Satisfiability

Theorem

A proposition A is valid (a tautology) if and only if $\neg A$ is unsatisfiable.

So, there are two ways of proving that a proposition A is a tautology:
A is satisfied by every truth assignment (or A cannot be falsified by any truth assignment).
$\neg A$ is unsatisfiable.

Relating the Logical Connectives

Lemma

$$
\begin{aligned}
& \models(A \leftrightarrow B) \leftrightarrow((A \rightarrow B) \wedge(B \rightarrow A)) \\
& \models(A \rightarrow B) \leftrightarrow(\neg A \vee B) \\
& =(A \vee B) \leftrightarrow \neg(\neg A \wedge \neg B) \\
& =\perp \leftrightarrow(A \wedge \neg A)
\end{aligned}
$$

Note: these equivalences imply that some connectives could be dispensed with. We normally want a smaller set of connectives when analyzing properties of the logic and a larger set when actually using the logic.

Normal Forms

A literal is an atomic proposition or its negation.
A propositional formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals.

$$
\begin{aligned}
& (P \vee Q \vee \neg R) \wedge(\neg P \vee \neg Q) \wedge P \\
& (P \vee Q \vee \neg R) \wedge(\neg P \vee \neg Q \vee R) \wedge(P \vee \neg Q \vee \neg R)
\end{aligned}
$$

A propositional formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions of literals.

$$
\begin{aligned}
& (P \wedge Q \wedge \neg R) \vee(\neg P \wedge \neg Q) \vee P \\
& (\neg P \wedge \neg Q \wedge R) \vee(P \wedge Q \wedge \neg R) \vee(\neg P \wedge Q \wedge R)
\end{aligned}
$$

- A propositional formula is in Negation Normal Form (NNF) if negations occur only in literals.

CNF or DNF is also NNF (but not vice versa).
$(P \wedge \neg Q) \wedge(P \vee(Q \wedge \neg R))$ in NNF, but not CNF or DNF.
Every propositional formula has an equivalent formula in each of these normal forms.

Semantic Entailment

- Consider two sets of propositions Γ and Δ.

We say that $v \vDash \Gamma(v$ satisfies $\Gamma)$ if $v \vDash B$ for every $B \in \Gamma$; analogously for Δ.
We say that Δ is a semantic consequence of Γ if every assignment that satisfies Γ also satisfies Δ, written as $\Gamma \models \Delta$.
, $A, A \rightarrow B \models A, B$
. $A \rightarrow B, \neg B=\neg A$
We also say that Γ semantically entails Δ when $\Gamma \models \Delta$.

Sequents

- A (propositional) sequent is an expression of the form $\Gamma \vdash \Delta$, where $\Gamma=A_{1}, A_{2}, \cdots, A_{m}$ and $\Delta=B_{1}, B_{2}, \cdots, B_{n}$ are finite (possibly empty) sequences of (propositional) formulae.
In a sequent $\Gamma \vdash \Delta$, Γ is called the antecedent (also context) and Δ the consequent.

Note: many authors prefer to write a sequent as $\Gamma \longrightarrow \Delta$ or $\Gamma \Longrightarrow \Delta$, while reserving the symbol \vdash for provability (deducibility) in the proof (deduction) system under consideration.

Sequents (cont.)

A sequent $A_{1}, A_{2}, \cdots, A_{m} \vdash B_{1}, B_{2}, \cdots, B_{n}$ is falsifiable if there exists a valuation v such that
$v \models\left(A_{1} \wedge A_{2} \wedge \cdots \wedge A_{m}\right) \wedge\left(\neg B_{1} \wedge \neg B_{2} \wedge \cdots \wedge \neg B_{n}\right)$.
, $A \vee B \vdash B$ is falsifiable, as

$$
v(A)=T, v(B)=F \models(A \vee B) \wedge \neg B .
$$

A sequent $A_{1}, A_{2}, \cdots, A_{m} \vdash B_{1}, B_{2}, \cdots, B_{n}$ is valid if, for every valuation $v, v \models A_{1} \wedge A_{2} \wedge \cdots \wedge A_{m} \rightarrow B_{1} \vee B_{2} \vee \cdots \vee B_{n}$.
, $A \vdash A, B$ is valid.

$$
A, B \vdash A \wedge B \text { is valid. }
$$

A sequent is valid if and only if it is not falsifiable.

- In the following, we will use only sequents of this simpler form: $A_{1}, A_{2}, \cdots, A_{m} \vdash C$, where C is a formula.

Inference Rules

- Inference rules allow one to obtain true statements from other true statements.
Below is an inference rule for conjunction.

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge I)
$$

- In an inference rule, the upper sequents (above the horizontal line) are called the premises and the lower sequent is called the conclusion.

Proofs

A deduction tree is a tree where each node is labeled with a sequent such that, for every internal (non-leaf) node,
the label of the node corresponds to the conclusion and
清 the labels of its children correspond to the premises of an instance of an inference rule.

- A proof tree is a deduction tree, each of whose leaves is labeled with an axiom.
The root of a deduction or proof tree is called the conclusion.
A sequent is provable if there exists a proof tree of which it is the conclusion.

Detour: Another Style of Proofs

Proofs may also be carried out in a calculational style (like in algebra); for example,

$$
\begin{array}{ll}
& (A \vee B) \rightarrow C \\
\equiv & \{A \rightarrow B \equiv \neg A \vee B\} \\
& \neg(A \vee B) \vee C \\
\equiv & \{\text { de Morgan's law }\} \\
& (\neg A \wedge \neg B) \vee C \\
\equiv & \{\text { distributive law }\} \\
& (\neg A \vee C) \wedge(\neg B \vee C) \\
\equiv & \{A \rightarrow B \equiv \neg A \vee B\} \\
& (A \rightarrow C) \wedge(B \rightarrow C) \\
\Rightarrow & \{A \wedge B \Rightarrow A\} \\
& (A \rightarrow C) \Rightarrow A\}
\end{array}
$$

Here, \Rightarrow corresponds to semantical entailment and \equiv to mutual semantical entailment. Both are transitive.

Detour: Some Laws for Calculational Proofs

Equivalence is commutative and associative

$$
\begin{aligned}
& A \leftrightarrow B \equiv B \leftrightarrow A \\
& A \leftrightarrow(B \leftrightarrow C) \equiv(A \leftrightarrow B) \leftrightarrow C
\end{aligned}
$$

$\perp \vee A \equiv A \vee \perp \equiv A$
$\neg A \wedge A \equiv \perp$

- $A \rightarrow B \equiv \neg A \vee B$
- $A \rightarrow \perp \equiv \neg A$
$(A \vee B) \rightarrow C \equiv(A \rightarrow C) \wedge(B \rightarrow C)$
$A \rightarrow(B \rightarrow C) \equiv(A \wedge B) \rightarrow C$
$A \rightarrow B \equiv A \leftrightarrow(A \wedge B)$
- $A \wedge B \Rightarrow A$

Natural Deduction in the Sequent Form

$$
\overline{\Gamma, A \vdash A}(A x)
$$

$$
\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \wedge B}(\wedge I)
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A}\left(\wedge E_{1}\right) \\
& \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B}\left(\wedge E_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B}\left(\vee I_{1}\right) \\
& \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B}\left(\vee I_{2}\right)
\end{aligned}
$$

Natural Deduction (cont.)

$$
\begin{array}{cc}
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B}(\rightarrow I) & \frac{\Gamma \vdash A \rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}(\rightarrow E) \\
\frac{\Gamma, A \vdash B \wedge \neg B}{\Gamma \vdash \neg A}(\neg I) & \frac{\Gamma \vdash A \quad \Gamma \vdash \neg A}{\Gamma \vdash B}(\neg E) \\
\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}(\neg \neg I) & \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}(\neg \neg E)
\end{array}
$$

These inference rules collectively are called System ND (the propositional part).

A Proof in Propositional ND

Below is a partial proof of the validity of
$P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q) \rightarrow \neg R$ in $N D$, where γ denotes $P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q)$.

$$
\begin{aligned}
& \frac{\frac{\vdots}{\gamma, R \vdash R \rightarrow Q} \quad \overline{\gamma, R \vdash R}(A x)}{}(\rightarrow E) \quad \frac{\vdots}{\gamma, R, Q \vdash P \wedge \neg P}(\neg I) \\
& \overline{P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q) \vdash \neg R}(\neg I) \\
& \stackrel{\vdash P \wedge(\neg P \vee \neg Q) \wedge(R \rightarrow Q) \rightarrow \neg R}{\vdash}(\rightarrow I)
\end{aligned}
$$

Soundness and Completeness

Theorem

System ND is sound, i.e., if a sequent $\Gamma \vdash C$ is provable in ND, then $\Gamma \vdash C$ is valid.

Theorem
System ND is complete, i.e., if a sequent $\Gamma \vdash C$ is valid, then $\Gamma \vdash C$ is provable in ND.

Compactness

A set Γ of propositions is satisfiable if some valuation satisfies every proposition in Γ. For example, $\{A \vee B, \neg B\}$ is satisfiable.

Theorem

For any (possibly infinite) set Γ of propositions, if every finite non-empty subset of Γ is satisfiable then Γ is satisfiable.

Proof hint: by contradiction and the completeness of $N D$.

Consistency

A set Γ of propositions is consistent if there exists some proposition B such that the sequent $\Gamma \vdash B$ is not provable.
Otherwise, Γ is inconsistent; e.g., $\{A, \neg(A \vee B)\}$ is inconsistent.

Lemma

For System ND, a set Γ of propositions is inconsistent if and only if there is some proposition A such that both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$ are provable.

Theorem

For System ND, a set Γ of propositions is satisfiable if and only if Γ is consistent.

