
Software Specification and Verification [Compiled on October 7, 2020] Fall 2020

Tactics for Natural Deduction in Coq

The Coq proof assistant is based on (predicative) Calculus of Inductive Constructions (CIC), a

combination of a higher-order logic and a richly-typed functional programming language. CIC is

very expressive and can encode the whole of (intuitionistic) first-order logic. Proof construction

using Coq can also be carried out in a manner very much like that using natural deduction in

the sequent form.

∧ ∨ → > ⊥ ¬
/\ \/ -> True False ~

Elimination apply H elim H apply H elim H apply H
elim H elim H

Introduction split left intro exact I intro

right intro H intro H

∀ ∃ =
forall exists =

Elimination apply H apply H rewrite <- H
elim H rewrite H

Introduction intro exists v reflexivity

intro H

(other tactics: assumption, cut, and assert, explained below)

In the above, H names, or gives name to, an assumption (which is a “higher-order term”) in

the environment (i.e., the antecedent of the current sequent/goal); same for v (in exists v). In

Coq, ¬A is written as ~A, which is defined to be A -> False (i.e., A→ ⊥).

Always end a tactic with a period “.” so that Coq knows the proof command is completed.

Say “assumption” when you find the current goal to be an axiom as in the rules of Natural

Deduction (appended below). It may occur that you want to apply the →-Elimination rule

(see the appendix), while A→ B is not immediately available in the set Γ of assumptions. Use

“cut A” in this case; enclose A in parentheses if it is a compound formula. A similar tactic is

“assert A,” which you may find more convenient.

Appendix

Intuitionistic Natural Deduction

Below are the inference rules in the sequent form for intuitionistic first-order logic with equality.

(Hypi)
A1, · · · , Ai, · · · , An ` Ai

1



Γ ` A Γ ` B (∧I)
Γ ` A ∧B

Γ ` A ∧B (∧E1)Γ ` A

Γ ` A ∧B (∧E2)Γ ` B

Γ ` A (∨I1)Γ ` A ∨B

Γ ` B (∨I2)Γ ` A ∨B

Γ ` A ∨B Γ, A ` C Γ, B ` C
(∨E)

Γ ` C

Γ, A ` B
(→I)

Γ ` A→ B
Γ ` A→ B Γ ` A (→E)

Γ ` B

(>I)
Γ ` >

Γ ` ⊥ (⊥E)
Γ ` A

Note: the last rule says that, if we can deduce ⊥ (or False , representing a contradiction), then

we can deduce anything.

Note: with the →-Elimination rule, one can deduce a contradiction (and hence anything) from

¬A (or A→ ⊥) and A.

Γ ` A[y/x]
(∀I)

Γ ` ∀xA
Γ ` ∀xA (∀E)

Γ ` A[t/x]

Γ ` A[t/x]
(∃I)

Γ ` ∃xA
Γ ` ∃xA Γ, A[y/x] ` B

(∃E)
Γ ` B

Note: in the quantifier rules above, we assume that all substitutions are admissible and y does

not occur free in Γ or A.

Let t, t1, t2 be arbitrary terms and again assume all substitutions are admissible.

(= I)
Γ ` t = t

Γ ` t1 = t2 Γ ` A[t1/x]
(= E)

Γ ` A[t2/x]

Note: the = sign is part of the object language, not a meta symbol.

2


