
Temporal Verification of Reactive
Systems

(Based on Manna and Pnueli [1991,1995,1996])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 1 / 39

Computational vs. Reactive Programs

Computational (Transformational) Programs

Run to produce a final result on termination
An example:

[local x : integer initially x = n;
y := 0;
while x > 0 do

x , y := x − 1, y + 2x − 1
od]

Only the initial values and the (final) result are relevant to
correctness
Can be specified by pre and post-conditions such as

{n ≥ 0} y := ? {y = n2} or
y : [n ≥ 0, y = n2]

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 2 / 39

Computational vs. Reactive Programs (cont.)

Reactive Programs

Maintaining an ongoing (typically not terminating) interaction
with their environments
An example: s : {0, 1} initially s = 1

l0 : loop forever do
l1 : remainder;
l2 : request(s);
l3 : critical;
l4 : release(s);


 ‖


m0 : loop forever do

m1 : remainder;
m2 : request(s);
m3 : critical;
m4 : release(s);




Must be specified and verified in terms of their behaviors,
including the intermediate states

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 3 / 39

The Framework

Computational Model: for providing an abstract syntactic base

fair transition systems (FTS)
fair discrete systems (FDS)

Implementation Language: for describing the actual
implementation; will define syntax by examples; translated into
FTS or FDS for verification

Specification Language: for specifying properties of a system;
will use linear temporal logic (LTL)

Verification Techniques: for verifying that an implementation
satisfies its specification

algorithmic methods: state space exploration
deductive methods: mathematical theorem proving

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 4 / 39

Three Kinds of Validity

Assertional Validity: validity of non-temporal formulae, i.e., state
formulae, over an arbitrary state (valuation)

General Temporal Validity: validity of temporal formulae over
arbitrary sequences of states

Program Validity: validity of a temporal formula over sequence
of states that represent computations of the analyzed system

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 5 / 39

Variables

Three kinds of variables will be needed:

Program (system) variables
Primed version of program variables: for referring to the values
of program variables in the next state when defining a state
transition
Specification variables: appearing only in formulae (but not in
the program) that specify properties of a program

We assume that all these variables are drawn from a universal
set of variables V .

For every unprimed variable x ∈ V , its primed version x ′ is also
in V .

Each variable has a type.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 6 / 39

Assertions

For describing a system and its specification, we assume an
underlying first-order assertion language over V .

The language provides the following elements:

Expressions (corresponding to first-order terms):
variables, constants, and functions applied to expressions
Atomic formulae:
propositions or boolean variables and predicates applied to
expressions
Assertions or state formulae (corresponding to first-order
formulae):
atomic formulae, boolean connectives applied to formulae, and
quantifiers applied to formulae

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 7 / 39

Fair Transition Systems

A fair transition system (FTS) P is a tuple 〈V ,Θ, T ,J , C〉:
V ⊆ V : a finite set of typed state variables, including data and
control variables. A (type-respecting) valuation of V is called a
V -state or simply state. The set of all V -states is denoted ΣV .

Θ : the initial condition, an assertion characterizing the initial
states.

T : a set of transitions, including the idling transition. Each
transition is associated with a transition relation, relating a state
and its successor state(s).

J ⊆ T : a set of just (weakly fair) transitions.

C ⊆ T : a set of compassionate (strongly fair) transitions.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 8 / 39

Transitions of an FTS

The transition relation of a transition τ ∈ T is expressed as an
assertion ρτ (V ,V ′):

Example: x = 1 ∧ x ′ = 0.
For s, s ′ ∈ ΣV , 〈s, s ′〉 |= x = 1 ∧ x ′ = 0 holds if the value of x is
1 in state s and the value of x is 0 in (the next) state s ′.

τ -successor

State s ′ is a τ -successor of s if 〈s, s ′〉 |= ρτ (V ,V ′)

τ(s)
∆
= {s ′ | s ′ is a τ -successor of s}.

enabledness of τ

En(τ)
∆
= (∃V ′)ρτ (V ,V ′).

τ is enabled in a state if En(τ) holds in that state.
τ is enabled in state s iff s has some τ -successor.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 9 / 39

Computations of an FTS

Given an FTS P = 〈V ,Θ, T ,J , C〉, a computation of P is an infinite
sequence of states σ : s0, s1, s2, · · · satisfying:

Initiation: s0 is an initial state, i.e., s0 |= Θ.

Consecution: for every i ≥ 0, si+1 is a τ -successor of state si ,
i.e., 〈si , si+1〉 |= ρτ (V ,V ′), for some τ ∈ T . In this case, we say
that τ is taken at position i .

Justice: for every τ ∈ J , it is never the case that τ is
continuously enabled, but never taken, from some point on.

Compassion: for every τ ∈ C, it is never the case that τ is
enabled infinitely often, but never taken, from some point on.

The set of all computations of P is denoted by Comp(P).

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 10 / 39

An Example Program and Its FTS

Program Any-Y:

x , y : natural initially x = y = 0 l0 : while x = 0 do[
l1 : y := y + 1;

]
l2 :

 ‖ [m0 : x := 1
m2 :

]
Informal description:

The program consists of an asynchronous composition of two
processes.
One process continuously increments y as long as it finds x to
be 0, while the other simply sets x to 1 (when it gets its turn to
execute).
The executions of the program are all possible interleavings of
the steps of the individual processes.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 11 / 39

An Example Program and Its FTS (cont.)

Program Any-Y as an FTS PAny-Y = 〈V ,Θ, T ,J , C〉:
V

∆
= {x , y : natural, π0 : {l0, l1, l2}, π1 : {m0,m1}}

Θ
∆
= π0 = l0 ∧ π1 = m0 ∧ x = y = 0

T ∆
= {τI , τl0 , τl1 , τm0}, whose transition relations are
ρI : π′0 = π0 ∧ π′1 = π1 ∧ x ′ = x ∧ y ′ = y ,

ρl0 : π0 = l0 ∧ ((x = 0 ∧ π′0 = l1) ∨ (x 6= 0 ∧ π′0 = l2))
∧π′1 = π1 ∧ x ′ = x ∧ y ′ = y

, etc.

J ∆
= {τl0 , τl1 , τm0}

C ∆
= ∅

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 12 / 39

Program Mux

Q0,Q1 : bool initially Q0 = Q1 = false
T : {0, 1} initially T = 0

P0 ::

l0 : loop forever do

l1 : remainder;
l2 : Q0 := true;
l3 : T := 0;
l4 : await ¬Q1 ∨ T 6= 0;
l5 : critical;
l6 : Q0 := false;




‖

P1 ::

m0 : loop forever do

m1 : remainder;
m2 : Q1 := true;
m3 : T := 1;
m4 : await ¬Q0 ∨ T 6= 1;
m5 : critical;
m6 : Q1 := false;




Justice is sufficient in preventing individual starvation.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 13 / 39

Strong Fairness (Compassion) Is Needed

Program Mux-Sem: mutual exclusion by a semaphore.

s : natural initially s = 1
l0 : loop forever do

l1 : remainder;
l2 : request(s);
l3 : critical;
l4 : release(s);


 ‖


m0 : loop forever do

m1 : remainder;
m2 : request(s);
m3 : critical;
m4 : release(s);




request(s)
∆
= 〈await s > 0 : s := s − 1〉

release(s)
∆
= s := s + 1

C: {τl2 , τm2}

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 14 / 39

Linear Temporal Logic (LTL)

State formulae
Constructed from the underlying assertion language

Temporal formulae

All state formulae are also temporal formulae.
If p and q are temporal formulae and x a variable in V, then the
following are temporal formulae:

¬p, p ∨ q, p ∧ q, p → q, p ↔ q
©p, 3p, 2p, p U q, p W q
−©p, ∼©p, −3p, −2p, p S q, p B q
∃x : p, ∀x : p

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 15 / 39

Semantics of LTL

Temporal formulae are interpreted over an infinite sequence of
states, called a model, with respect to a position in that
sequence.

We will define the satisfaction relation (σ, i) |= ϕ (or ϕ holds in
(σ, i)), as the formal semantics of a temporal formula ϕ over an
infinite sequence of states σ = s0, s1, s2, . . . , si , . . . and a position
i ≥ 0.

A sequence σ satisfies a temporal formula ϕ, denoted σ |= ϕ, if
(σ, 0) |= ϕ.

Variables in V are partitioned into flexible and rigid variables. A
flexible variable may assume different values in different states,
while a rigid variable must assume the same value in all states of
a model.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 16 / 39

Semantics of LTL (cont.)

For a state formula p:
(σ, i) |= p ⇐⇒ p holds at si .

Boolean combinations of formulae:
(σ, i) |= ¬p ⇐⇒ (σ, i) |= p does not hold.
(σ, i) |= p ∨ q ⇐⇒ (σ, i) |= p or (σ, i) |= q.
(σ, i) |= p ∧ q ⇐⇒ (σ, i) |= p and (σ, i) |= q.
(σ, i) |= p → q ⇐⇒ (σ, i) |= p implies (σ, i) |= q.
(σ, i) |= p ↔ q ⇐⇒ (σ, i) |= p if and only if (σ, i) |= q.

Alternatively, the latter three cases can be defined in terms of ¬
and ∨, namely p ∧ q

∆
= ¬(¬p ∨ ¬q), p → q

∆
= ¬p ∨ q, and

p ↔ q
∆
= (p → q) ∧ (q → p).

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 17 / 39

Semantics of LTL: Future Operators

©p (next p):
(σ, i) |= ©p ⇐⇒ (σ, i + 1) |= p.

3p (eventually p or sometime p):
(σ, i) |= 3p ⇐⇒ for some k ≥ i , (σ, k) |= p.

2p (henceforth p or always p):
(σ, i) |= 2p ⇐⇒ for every k ≥ i , (σ, k) |= p.

p U q (p until q):
(σ, i) |= p U q ⇐⇒ for some k ≥ i , (σ, k) |= q and for every j
s.t. i ≤ j < k , (σ, j) |= p.

p W q (p wait-for q):
(σ, i) |= p W q ⇐⇒ for every k ≥ i , (σ, k) |= p, or for some
k ≥ i , (σ, k) |= q and for every j , i ≤ j < k , (σ, j) |= p.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 18 / 39

Semantics of LTL: Future Operators (cont.)

It can be shown that, for every σ and i ,

(σ, i) |= 3p iff (σ, i) |= true U p
(σ, i) |= 2p iff (σ, i) |= ¬3¬p
(σ, i) |= p W q iff (σ, i) |= 2p ∨ p U q

So, one can also take © and U as the primitive operators and
define others in terms of © and U :

3p
∆
= true U p

2p
∆
= ¬3¬p

p W q
∆
= 2p ∨ p U q

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 19 / 39

Semantics of LTL: Past Operators

−©p (previous p):
(σ, i) |= −©p ⇐⇒ (i > 0) and (σ, i − 1) |= p.

∼©p (before p):
(σ, i) |= ∼©p ⇐⇒ (i > 0) implies (σ, i − 1) |= p.

−3p (once p):
(σ, i) |= −3p ⇐⇒ for some k , 0 ≤ k ≤ i , (σ, k) |= p.

−2p (so-far p):
(σ, i) |= −2p ⇐⇒ for every k , 0 ≤ k ≤ i , (σ, k) |= p.

p S q (p since q):
(σ, i) |= p S q ⇐⇒ for some k , 0 ≤ k ≤ i , (σ, k) |= q and for
every j , k < j ≤ i , (σ, j) |= p.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 20 / 39

Semantics of LTL: Past Operators (cont.)

p B q (p back-to q):
(σ, i) |= p B q ⇐⇒ for every k , 0 ≤ k ≤ i , (σ, k) |= p, or for
some k , 0 ≤ k ≤ i , (σ, k) |= q and for every j , k < j ≤ i ,
(σ, j) |= p.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 21 / 39

Semantics of LTL: Past Operators (cont.)

It can be shown that, for every σ and i ,

(σ, i) |= −©p iff (σ, i) |= ¬ ∼©¬p
(σ, i) |= −3p iff (σ, i) |= true S p
(σ, i) |= −2p iff (σ, i) |= ¬ −3¬p
(σ, i) |= p B q iff (σ, i) |= −2p ∨ p S q

So, one can also take ∼© and S as the primitive operators and
define others in terms of ∼© and S :

−©p
∆
= ¬ ∼©¬p

−3p
∆
= true S p

−2p
∆
= ¬ −3¬p

p B q ∆
= −2p ∨ p S q

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 22 / 39

Semantics of LTL: Quantifiers

A sequence σ′ is called a u-variant of σ if σ′ differs from σ in at most
the interpretation given to u in each state.

(σ, i) |= ∃u : ϕ ⇐⇒ (σ′, i) |= ϕ for some u-variant σ′ of σ.

(σ, i) |= ∀u : ϕ ⇐⇒ (σ′, i) |= ϕ for every u-variant σ′ of σ.

Alternatively, ∀u : ϕ
∆
= ¬(∃u : ¬ϕ).

These definitions apply to both flexible and rigid variables.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 23 / 39

Some LTL Conventions

Let first abbreviate ∼©false, which holds only at position 0; first
means “this is the first state”.

We use u− to denote the previous value of u; by convention, u−

equals u at position 0.

Example: x = x− + 1.
In pure LTL,
(first ∧ x = x + 1) ∨ (¬first ∧ ∀u : −©(x = u)→ x = u + 1).

We use u+ (or u′) to denote the next value of u, i.e., the value
of u at the next position.

Example: x+ = x + 1.
In pure LTL, ∀u : x = u → ©(x = u + 1).

These previous and next-value notations also apply to
expressions.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 24 / 39

Validity

A state formula is state valid if it holds in every state.

A temporal formula p is (temporally) valid, denoted |= p, if it
holds in every model.

A state formula is P-state valid if it holds in every P-accessible
state (i.e., every state that appears in some computation of P).

A temporal formula p is P-valid, denoted P |= p, if it holds in
every computation of P .

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 25 / 39

Equivalence and Congruence

Two formulae p and q are equivalent if p ↔ q is valid.
Example: p W q ↔ 2(−3¬p → −3q).

Two formulae p and q are congruent if 2(p ↔ q) is valid.
Example: ¬3p and 2¬p are congruent, as 2(¬3p ↔ 2¬p) is
valid.

Two congruent formulae may replace each other in any context.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 26 / 39

A Hierarchy of Temporal Properties

Classes of temporal properties; p, q, pi , qi below are arbitrary
past temporal formulae

Safety properties: 2p
Guarantee properties: 3p
Obligation properties:

∧n
i=1(2pi ∨3qi)

Response properties: 23p
Persistence properties: 32p
Reactivity properties:

∧n
i=1(23pi ∨32qi)

The hierarchy

Safety
Guarantee

⊆ Obligation ⊆ Response
Persistence

⊆ Reactivity

Every temporal formula is equivalent to some reactivity formula.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 27 / 39

More Common Temporal Properties

Safety properties: 2p
Example: p W q is a safety property, as it is equivalent to

2(−3¬p → −3q).

Response properties

Canonical form: 23p
Variant: 2(p → 3q) (p leads-to q), which is equivalent to

23(¬p B q).

Reactivity properties:
∧n

i=1(23pi ∨32qi)

(Simple) reactivity properties

Canonical form: 23p ∨32q
Variants: 23p → 23q or 2(23p → 3q), which is equivalent
to 23q ∨32¬p.
Extended form: 2((p ∧23r)→ 3q)

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 28 / 39

Rules for Safety Properties

Rule INV
I1. Θ→ ϕ
I2. ϕ→ q
I3. {ϕ} T {ϕ}

2q

where {p} T {q} means {p} τ {q} (i.e., ρτ ∧ p → q′) for every
τ ∈ T

The auxiliary assertion ϕ is called an inductive invariant, as it
holds initially and is preserved by every transition.

This rule is sound and (relatively) complete for establishing
P-validity of the future safety formula 2q (where q is a state
formula).

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 29 / 39

A Safety Property of Program Mux-Sem

Mutual exclusion: 2(¬(π0 = l3 ∧ π1 = m3)), which is not
inductive.

The inductive ϕ needed:

y ≥ 0 ∧ (π0 = l3) + (π0 = l4) + (π1 = m3) + (π1 = m4) + y = 1

where true and false are equated respectively with 1 and 0.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 30 / 39

Rules for Response Properties

Rule J-RESP (for a just transition τ ∈ J)

J1. 2(p → (q ∨ ϕ))
J2. {ϕ} T {q ∨ ϕ}
J3. {ϕ} τ {q}
J4. 2(ϕ→ (q ∨ En(τ)))

2(p → 3q)

This is a “one-step” rule that relies on a helpful just transition.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 31 / 39

Rules for Response Properties (cont.)

Analogously, there is a one-step rule that relies on a helpful
compassionate transition.

Rule C-RESP (for a compassionate transition τ ∈ C)

C1. 2(p → (q ∨ ϕ))
C2. {ϕ} T {q ∨ ϕ}
C3. {ϕ} τ {q}
C4. T − {τ} ` 2(ϕ→ 3(q ∨ En(τ)))

2(p → 3q)

Premise C4 states that the proof obligation should be carried out for
a smaller program with T − {τ} as the set of transitions.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 32 / 39

Rules for Response Properties (cont.)

Rule M-RESP (monotonicity) and Rule T-RESP (transitivity)

2(p → r),2(t → q)

2(r → 3t)

2(p → 3q)

2(p → 3r)

2(r → 3q)

2(p → 3q)

These rules belong to the part for proving general temporal validity.
They are convenient, but not necessary when we have a relatively
complete rule that reduce program validity directly to assertional
validity.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 33 / 39

Rules for Response Properties (cont.)

A ranking function maps finite sequences of states into a
well-founded set.

Rule W-RESP (with a ranking function δ)

W1. 2(p → (q ∨ ϕ))
W2. 2([ϕ ∧ (δ = α)]→ 3[q ∨ (ϕ ∧ δ ≺ α)])

2(p → 3q)

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 34 / 39

Rules for Response Properties (cont.)

Let T = {τ1, · · · , τn}. ϕ denotes ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn and δ is a
ranking function.

Rule F-RESP

F1. 2(p → (q ∨ ϕ))
for i = 1, · · · ,m
F2. {ϕi ∧ (δ = α)} T {q ∨ (ϕ ∧ (δ ≺ α)) ∨ (ϕi ∧ (δ � α))}
F3. {ϕi ∧ (δ = α)} τi {q ∨ (ϕ ∧ (δ ≺ α))}
J4. 2(ϕi → (q ∨ En(τi))), if τi ∈ J
C4. T − {τi} ` 2(ϕi → 3(q ∨ En(τi))), if τi ∈ C

2(p → 3q)

Rule F-RESP is (relatively) complete for proving the P-validity of any
response formula of the form 2(p → 3q).

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 35 / 39

Rules for Reactivity Properties

Rule B-REAC

B1. 2(p → (q ∨ ϕ))
B2. {ϕ ∧ (δ = α)} T {q ∨ (ϕ ∧ (δ � α))}
B3. 2([ϕ ∧ (δ = α) ∧ r]→ 3[q ∨ (δ ≺ α)])

2((p ∧23r)→ 3q)

For programs without compassionate transitions, Rule B-REAC is
(relatively) complete for proving the P-validity of any (simple,
extended) reactivity formula of the form 2((p ∧23r)→ 3q).

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 36 / 39

Fair Discrete Systems

An FDS D is a tuple 〈V ,Θ, ρ,J , C〉:
V ⊆ V: A finite set of typed state variables, containing data
and control variables.
Θ : The initial condition, an assertion characterizing the initial
states.
ρ : The transition relation, an assertion relating the values of
the state variables in a state to the values in the next state.
J = {J1, · · · , Jk} : A set of justice requirements (weak
fairness).
C = {〈p1, q1〉, · · · , 〈pn, qn〉} : A set of compassion requirements
(strong fairness).

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 37 / 39

Fair Discrete Systems (cont.)

So, FDS is a slight variation of the model of fair transition
system.

The main difference between the FDS and FTS models is in the
representation of fairness constraints.

FDS enables a unified representation of fairness constraints
arising from both the system being verified, and the temporal
property.

A computation of D is an infinite sequence of states
σ = s0, s1, s2, · · · satisfying Initiation, Consecution, Justice, and
Compassion conditions.

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 38 / 39

Program Mux-Sem as an FDS

Program Mux-Sem: mutual exclusion by a semaphore.

s : natural initially s = 1
l0 : loop forever do

l1 : remainder;
l2 : request(s);
l3 : critical;
l4 : release(s);


 ‖


m0 : loop forever do

m1 : remainder;
m2 : request(s);
m3 : critical;
m4 : release(s);




request(s)
∆
= 〈await s > 0 : s := s − 1〉

release(s)
∆
= s := s + 1

C: {(at l2 ∧ s > 0, at l3), (at m2 ∧ s > 0, at m3)}

Yih-Kuen Tsay (IM.NTU) Temporal Verification of Reactive Systems SSV 2020 39 / 39

	Computational vs. Reactive Programs
	The Verification Framework
	Fair Transition Systems
	Linear Temporal Logic
	Temporal Hierarchy
	Rules for Safety Properties
	Rules for Response Properties
	Rules for Reactivity Properties
	Fair Discrete Systems

