
Compositional Specification and
Reasoning

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 1 / 44

Outline

Review of the Owicki-Gries Method

Compositional Methods

The Mutual Induction Mechanism

Compositional Reasoning in Temporal Logic

Interface Automata

Concluding Remarks

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 2 / 44

Sequential vs. Concurrent Programs/Components

Both generate computations, which are sequences of states

possibly with labels on the steps: s0
l1→ s1

l2→ · · · ln→ sn

(
ln+1→ sn+1

ln+2→ · · ·).

For a sequential component, only its start and final states
matter to other components.

Computations of a concurrent component are produced by
interleaving its steps with those of an ‘arbitrary but compatible’
environment.

Many interesting concurrent components, often referred to as
reactive components, are not meant to terminate.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 3 / 44

Taking Interference into Account

Probably the first and best-known attempt at generalizing Hoare
Logic to concurrent programs is:

Owicki, S. and Gries, D. An axiomatic proof technique for
parallel programs. Acta Informatica, 6:319-340, 1976.

Proof outlines (for terminating programs)

Interference freedom (here, one can sense the notion of
“assume-guarantee”)

Auxiliary variables

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 4 / 44

Interference Freedom

A proof outline {pi} S∗i {qi} does not interfere with another
proof outline {pj} S∗j {qj} if the following holds:
For every normal assignment or atomic region R in Si and every
assertion r in {pj} S∗j {qj},

{r ∧ pre(R)} R {r}.

Given a parallel program [S1‖ · · · ‖Sn], the proof outlines
{pi} S∗i {qi}, 1 ≤ i ≤ n, are said to be interference free if none
of the proof outlines interferes with any other.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 5 / 44

Main Composition Rule of Owicki and Gries

{pi} S∗i {qi}, 1 ≤ i ≤ n, are interference free

{
∧n

i=1 pi} [S1‖ · · · ‖Sn] {
∧n

i=1 qi}

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 6 / 44

Criteria of Compositionality

Compositional specifications of a component should not refer to
the internal structures of itself and/or other components.

This is desirable, as we often want to speak of replacing a
component by another that satisfies the same specification.

So, the purists would say, “Owicki and Greis’ method does not
qualify as a compositional method.”

Remark: Owicki and Greis’ method (or its adaptation) is probably the
most usable when one has at hand all the code of a (small)
concurrent system.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 7 / 44

Lamport’s ‘Hoare Logic’

In this probably forgotten paper, Lamport proposed a new
interpretation to pre and post-conditions:

Lamport, L. The ‘Hoare Logic’ of concurrent programs.
Acta Informatica, 14:21-37, 1980.

Notation: {P} S {Q}
Meaning: If execution starts anywhere in S with P true, then
executing S (1) will leave P true while control is in S and (2) if
terminating, will make Q true.

The usual Hoare triple would be expressed as {P} 〈S〉 {Q},
where 〈·〉 indicates atomic execution.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 8 / 44

Lamport’s ‘Hoare Logic’ (cont.)

Rule of consequence (can’t strengthen the pre-condition):

{P} S {Q ′}, Q ′ → Q
{P} S {Q}

Rules of Conjunction and Disjunction:

{P} S {Q}, {P ′} S {Q ′}
{P ∧ P ′} S {Q ∧ Q ′}

{P} S {Q}, {P ′} S {Q ′}
{P ∨ P ′} S {Q ∨ Q ′}

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 9 / 44

Lamport’s ‘Hoare Logic’ (cont.)

Rule of Sequential Composition:

{P} S {Q}, {R} T {U}, Q ∧ at(T)→ R
{(in(S)→ P) ∧ (in(T)→ R)} S ;T {U}

Rule of Parallel Composition:

{P} Si {P}, 1 ≤ i ≤ n

{P} cobegin
n

‖
i=1

Si coend {P}

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 10 / 44

UNITY Logic

UNITY was once quite popular. Its logic has been modified in a
subsequent work.

Misra, J. A logic for concurrent programming. Journal of
Computer and Software Engineering, 3(2): 239-272, 1995.

A program consists of (1) an initial condition and (2) a set of
actions (or conditional multiple-assignments), which always
includes skip.

Main Notation: p co q
∆
= ∀s :: {p} s {q} (over all action s of a

given program).

Note: There are also operators for liveness properties.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 11 / 44

UNITY Logic (cont.)

Notation: p co q
∆
= ∀s :: {p} s {q} (p constrains q)

Meaning: Whenever p holds, q holds after the execution of any
single action (if it terminates).

Examples:

“∀m :: x = m co x ≥ m” says x never decreases.
“∀m, n :: x , y = m, n co x = m ∨ y = n” says x and y never
change simultaneously.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 12 / 44

UNITY Logic vs. ‘Hoare Logic’

“co” enjoys the complete rule of consequence.

Rules of conjunction and disjunction also hold.

Stronger rule of parallel composition:

p co q in F , p co q in G
p co q in F ‖G

But, “co” is much less convenient for sequential composition.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 13 / 44

Jones’ Rely/Guarantee Pairs

Jones, C.B. Tentative steps towards a development method
for interfering programs. TOPLAS, 5(4):596-619, 1983.

Assumption about the environment is expressed by a
pre-condition and a rely-condition

Promised behavior of a component is expressed by a
post-condition and a guarantee-condition.

Both rely and guarantee-conditions are predicates of two states,
to deal with reactive behavior.

We will illustrate rely and guarantee-conditions in the
context of temporal logic.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 14 / 44

Assume-Guarantee Specifications

A component will behave properly only if its environment (the
context where it is used) does.

To summarize the lessons learned, the specification of a
component should include

1. assumed properties about its environment and
2. guaranteed properties of the module if the environment obeys

the assumption.

The names vary: rely-guarantee, assumption-commitment,
assumption-guarantee, etc.

Note: we will focus on reactive behavior from now on.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 15 / 44

Mutual Dependency

Let A � G denote a generic component specification with
assumption A and guarantee G .

The following composition rule looks plausible, but is circular and
unsound without an adequate semantics for � .

[[M1]] |= A1 � G1

[[M2]] |= A2 � G2

A ∧ G1 → A2

A ∧ G2 → A1

[[M1 ‖M2]] |= A � (G1 ∧ G2)

The circularity may be broken by introducing a mutual induction
mechanism into � .

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 16 / 44

The Mutual Induction Mechanism

The mechanism was probably first proposed in

Misra, J. and Chandy, K. Proofs of networks of processes.
IEEE Transactions on Software Engineering, 7:417–426,
1981.

Notation: r | h | s
h is a CSP-like process with message communication.
r and s are assertions on the traces of h

Meaning: (1) s holds initially and (2) if r holds up to the k-th
point in a trace of h, then s holds up to the (k + 1)-th point in
that trace, for all k .

Note: “r [h]s” is used if r or s also refers to the internal
communication channels of h.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 17 / 44

Misra and Chandy’s Proof System

Rule of network composition:

ri | hi | si , 1 ≤ i ≤ n

(
n∧

i=1

ri)[
n

‖
i=1

hi](
n∧

i=1

si)

Rule of inductive consequence:

(s ∧ r)→ r ′; r ′ | h | s
r | h | s

r | h | s ′; s ′ → s
r | h | s

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 18 / 44

Misra and Chandy’s Proof System (cont.)

Theorem of Hierarchy:

ri | hi | si , 1 ≤ i ≤ n; (
n∧

i=1

si ∧ R0)→
n∧

i=1

ri ;
n∧

i=1

si → S0

R0 |
n

‖
i=1

hi | S0

There are also rules for proving “r | h | s” from scratch.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 19 / 44

Limit of the Mutual Induction Mechanism

Induction on the length of computation works for safety
properties (invariants).

But, it does not for liveness, which needs explicit well-founded
induction (by defining variant functions that decrease as
computation progresses)

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 20 / 44

Modular Reasoning in Temporal Logic

Pnueli, A. In transition from global to modular temporal
reasoning about programs. Logics and Models of
Concurrent Systems, 123-144. Springer, 1985.

Steps by the component and those by its environment need to
be distinguished.

Induction structures are required.

Computations of a component allow arbitrary environment steps

Past temporal operators (as an alternative to history variables)
are useful.

Barringer and Kuiper had explored some of the above ideas
earlier [LNCS 197, 1984].

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 21 / 44

Conditions for Easy Compositionality

Exactly one single component is accountable for changes at the
interface in each step.

Input-enabled: a component is always ready to perform any
input action (which is paired with some output action from the
environment).

For shared-variable models, this is automatically true.

With these conditions, [[C1 ‖C2]] can be easily understood as
[[C1]] ∩ [[C2]].

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 22 / 44

Modular Reasoning in TLA

The probably most-cited work of assume-guarantee specification in
temporal logic is:

Abadi, M. and Lamport, L. Conjoining specifications.
TOPLAS, 17(3):507-534, 1995.

Main notation: E +−. M
Meaning: (1) M holds initially and (2) for n ≥ 0, if E holds for
the prefix of length n in a computation, then M holds for the
prefix of length n + 1.

TLA is extended in some sense.

Liveness properties are treated.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 23 / 44

Abadi and Lamport

Three kinds of implication (between safety properties A and G):

A→ G
σ |= A→ G ⇐⇒ σ |= A implies σ |= G .
A−. G
σ |= A−. G ⇐⇒ for all i ≥ 0, σ|i |= A implies σ|i |= G .
A +−. G
σ |= A +−. G ⇐⇒ for all i ≥ 0, σ|i |= A implies σ|i+1 |= G .

Fundamental relationships

A +−. G is the “realizable part” of A→ G .
M ‖A |= G iff M |= A−. G .
|= A +−. G = (G −. A)−. G .
When A and G are “orthogonal”, |= A +−. G = A−. G and
hence M ‖A |= G iff M |= A +−. G .

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 24 / 44

Abadi and Lamport (cont.)

One of the composition rules:

|= A ∧ G2 → A1

|= A ∧ G1 → A2

|= A ∧ G1 ∧ G2 → G

|= (A1
+−. G1) ∧ (A2

+−. G2)→ (A +−. G)

Alternative form:

M1 ‖A1 |= G1

M2 ‖A2 |= G2

|= A ∧ G2 → A1

|= A ∧ G1 → A2

|= A ∧ G1 ∧ G2 → G
(M1 ‖M2) ‖A |= G

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 25 / 44

Modular Reasoning in LTL

The operators −. and +−. can be formalized in LTL:

Jonsson, B. and Tsay, Y.-K. Assumption/guarantee
specifications in linear-time temporal logic. Theoretical
Computer Science, 167:47-72, 1996.

It makes good use of past temporal operators.

Proof rules are purely syntactical in LTL.

Note: We will omit the treatment of hiding and liveness.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 26 / 44

LTL

An LTL formula is interpreted over an infinite sequence of states
σ = s0, s1, s2, . . . , si , . . . relative to a position.

State formulae: (σ, i) |= ϕ iff ϕ holds at si .

(σ, i) |= ©ϕ (“next ϕ”) iff (σ, i + 1) |= ϕ.

(σ, i) |= 2ϕ (“henceforth ϕ”) iff ∀k ≥ i : (σ, k) |= ϕ.

(σ, i) |= ∼©ϕ (“before ϕ”) iff (i > 0)→ ((σ, i − 1) |= ϕ).

(σ, i) |= −2ϕ (“so-far ϕ”) iff ∀k : 0 ≤ k ≤ i : (σ, k) |= ϕ.

¬ϕ, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, . . ., etc. are defined in the obvious
way. We will not use 3 or −3 in this talk.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 27 / 44

LTL (cont.)

Syntactic sugars:

u− denotes the value of u in the previous state; by convention,
u− equals u at position 0.

first
∆
= ∼©false, which holds only at position 0.

A sequence σ is satisfies a temporal formula ϕ if (σ, 0) |= ϕ.

A formula ϕ is valid, denoted |= ϕ, if ϕ is satisfied by every sequence.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 28 / 44

Program keep-ahead

local a, b : integer where a = b = 0

Pa ::

[
loop forever do[
a := b + 1

]]
‖Pb ::

[
loop forever do[
b := a + 1

]]

(a = 0) ∧ (b = 0) ∧2

 (a = b− + 1) ∧ (b = b−)
∨ (b = a− + 1) ∧ (a = a−)
∨ (a = a−) ∧ (b = b−)



Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 29 / 44

Program keep-ahead(cont.)

local a, b : integer where a = b = 0

Pa ::

[
loop forever do[
a := b + 1

]]
‖Pb ::

[
loop forever do[
b := a + 1

]]

2

(first → (a = 0) ∧ (b = 0)) ∧

 (a = b− + 1) ∧ (b = b−)
∨ (b = a− + 1) ∧ (a = a−)
∨ (a = a−) ∧ (b = b−)



Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 30 / 44

Modularized Program keep-ahead

module Ma

in b : integer
out a : integer = 0

loop forever do[
a := b + 1

]
‖

module Mb

in a : integer
out b : integer = 0

loop forever do[
b := a + 1

]

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 31 / 44

Modularized Program keep-ahead (cont.)

ΦMa

∆
= (a = 0) ∧2

(
(a = b− + 1) ∧ (b = b−)

∨ (a = a−)

)

ΦMb

∆
= (b = 0) ∧2

(
(b = a− + 1) ∧ (a = a−)

∨ (b = b−)

)

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 32 / 44

Parallel Composition as Conjunction

The parallel composition of modules Ma and Mb is equivalent to
Program keep-ahead; formally,

ΦMa ∧ ΦMb
↔ Φkeep-ahead .

Let ΦM denote the system specification of a module M .
We take ΦM → ϕ as the formal definition of the fact that M
satisfies ϕ, also denoted as M |= ϕ.

If M is a module of system S (i.e., S ≡ M ∧M ′, for some M ′),
then M |= ϕ implies S |= ϕ.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 33 / 44

Assume-Guarantee Formulae

Assume that the assumption and the guarantee are safety
formulae respectively of the forms 2HA and 2HG , where HA and
HG are past formulae (containing no future temporal operators).

An A-G formula is defined as follows:

2HA � 2HG
∆
= 2(∼© −2HA → −2HG)

or equivalently,

2HA � 2HG
∆
= 2(∼© −2HA → HG).

Note 1: 2HA � 2HG implies HG holds initially (at position 0).

Note 2: (true � 2HG) ≡ 2HG .

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 34 / 44

Refinement

Refinement of Guarantee

2[∼© −2HA ∧ −2HG ′ → −2HG]

2(∼© −2HA → −2HG ′) → 2(∼© −2HA → −2HG)

Refinement of Assumption

2[−2HA ∧ −2HA → −2HA′]

2(∼© −2HA′ → −2HG) → 2(∼© −2HA → −2HG)

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 35 / 44

Composing A-G Specifications

|= (2HG1 � 2HG2) ∧ (2HG2 � 2HG1) → 2HG1 ∧2HG2 .

This shows that A-G formulae have a mutual induction mechanism
built in and hence permit “circular reasoning” (mutual dependency).

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 36 / 44

Composing A-G Specifications (cont.)

Suppose that 2HAi
and 2HGi

, for 1 ≤ i ≤ n, 2HA, and 2HG are
safety formulae.

1. |= 2

(
−2HA ∧ −2

n∧
i=1

HGi
→ HAj

)
, for 1 ≤ j ≤ n

2. |= 2

(
∼© −2HA ∧ −2

n∧
i=1

HGi
→ HG

)
|=

n∧
i=1

(2HAi
� 2HGi

) → (2HA � 2HG)

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 37 / 44

A Compositional Verification Rule

Rule MOD-S:
Suppose that Ai , Gi , and G are canonical safety formulas. Then,

[[Mi]] |= Ai � Gi for 1 ≤ i ≤ n
n∧

i=1

(Ai � Gi)→ G

[[
n

‖
i=1

Mi]] |= G

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 38 / 44

Interface Automata

Introduced, studied, and extended in a series of papers by de Alfaro,
Henzinger, etc. A good starter:

de Alfaro, L. Game Models for Open Systems. Verification:
Theory and Practice, LNCS 2772, 269-289. Springer, 2003.

A process language in the form of an automaton with joint
actions (divided into inputs and outputs) for specifying the
abstract behaviors of a module.

Unreadiness to offer an input in a state is seen as assuming that
the environment does not offer the corresponding output in the
same state.

So, one single interface automaton describes the input
assumption and the output guarantee of a module.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 39 / 44

Interface Automata (cont.)

When two interface automata are composed, an incompatible
state may result, where some output is enabled in one automaton
but the corresponding input is not in the other automaton.

Main decision problem: compatibility.
Two interface automata are compatible if there exists an
environment in which their product can be useful, i.e., all
incompatible states may be avoided.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 40 / 44

Concluding Remarks

Assume-guarantee specification and reasoning were motivated by
practical concerns.

The effort had mostly been on obtaining the right form of
specifications to enable compositional reasoning.

Advancing the practice seems a lot harder than advancing the
theory.

It took over three decades for pre and post-conditions and state
invariants to get gradually accepted in practice.

Hopefully, more general assume-guarantee specifications will
start to play a complementary role soon.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 41 / 44

References

Abadi, M. and Lamport, L. Composing specifications. TOPLAS,
15(1):73–132, January, 1993.

Abadi, M. and Lamport, L. Conjoining specifications. TOPLAS,
17(3):507–534, May, 1995.

Abadi, M. and Plotkin, G.D. An abstract account of
composition. MFCS 1995, 499–508.

Abadi, M. and Merz, S. A logical view of composition. TCS,
114(1):3–30, June, 1993.

de Alfaro, L. Game Models for Open Systems. Verification:
Theory and Practice, LNCS 2772, 269-289. Springer, 2003.

Apt, K.R. and Olderog, E.-R. Verification of Sequential and
Concurrent Programs, Third Extended Edition, Springer-Verlag,
209.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 42 / 44

References (cont.)

Collette, P. An explanatory presentation of composition rules for
assumption-commitment specifications. IPL, 50:31–35, 1994.

Floyd, R.W. Assigning meanings to programs. MACS, 19–32,
1967.

Hoare, C.A.R. An axiomatic basis for computer programs.
CACM, 12(10):576–580, May, 1969.

Jones, C.B. Tentative steps towards a development method for
interfering programs. TOPLAS, 5(4):596-619, 1983.

Jonsson, B. and Tsay, Y.-K. Assumption/guarantee
specifications in linear-time temporal logic. TCS, 167:47–72,
October, 1996.

Lamport, L. The ‘Hoare Logic’ of concurrent programs. Acta
Informatica, 14:21–37, 1980.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 43 / 44

References (cont.)

Misra, J. A logic for concurrent programming. Journal of
Computer and Software Engineering, 3(2): 239-272, 1995.

Misra, J. and Chandy, K. Proofs of networks of processes. IEEE
Transactions on Software Engineering, 7:417–426, 1981.

Owicki, S. and Gries, D. An axiomatic proof technique for
parallel programs I. Acta Informatica, 6:319–340, 1976.

Pnueli, A. In transition from global to modular temporal
reasoning about programs. Logics and Models of Concurrent
Systems, 123-144. Springer, 1985.

Yih-Kuen Tsay (IM.NTU) Compositional Specification and Reasoning SSV 2022 44 / 44

	Review of the Owicki-Gries Method
	Compositional Methods
	Mutual Induction
	Compositional Reasoning in Temporal Logic
	Interfaces
	Conclusion
	References

