

Soundness and Completeness of Hoare Logic

(Based on [Apt and Olderog 1997])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Overview

- Given an adequate semantics for the programming language under consideration, the validity of a Hoare triple $\{p\}$ S $\{q\}$ can be precisely defined.
- A Hoare Logic for a programming language is sound if every Hoare triple proven by the logic is valid.
- A Hoare Logic for a programming language is complete if every valid Hoare triple can be proven by the logic.
- We shall develop these results for a very simple deterministic programming language.

A Simple Programming Language

• We will consider a Hoare Logic for the following simple (deterministic) programming language:

Note: here t is an expression (first-order term) of the same type as variable u; B is a boolean expression.

• We consider only programs that are free of syntactical or typing errors.

Proof Rules of Hoare Logic

4 / 31

Proof Rules of Hoare Logic (cont.)

$$\frac{\{p \land B\} \ S \ \{p\}}{\{p\} \ \text{while } B \ \text{do} \ S \ \text{od} \ \{p \land \neg B\}}$$

$$\frac{p \rightarrow p' \qquad \{p'\} \ S \ \{q'\} \qquad q' \rightarrow q}{\{p\} \ S \ \{q\}}$$
(Consequence)

We will refer to this proof system as System PD.

Operational Semantics

- A program/statement with a start state is seen as an abstract machine.
- (1) The part of program that remains to be executed and (2) the current state constitute the configuration of the abstract machine.
- By executing the program step by step, the machine transforms from one configuration to another.
- A transition relation naturally arises between configurations.
- The (input/output) semantics $\mathcal{M}[S]$ of a program S can then be defined with the help of the above transition relation.

Operational Semantics (cont.)

- \odot At a high level, a configuration is a pair $\langle S, \sigma \rangle$ where S is a program and σ is a "proper" state (which essentially is a value assignment).
- A transition

$$\langle S, \sigma \rangle \to \langle R, \tau \rangle$$

means "executing S one step in state σ leads to state τ with R as the remainder of S to be executed."

- Let E denote the empty program. When the remainder R equals E, it means that S has terminated.
- lacktriangledown The transition relation o can be defined inductively (in the form of axioms and rules) over the structure of a program.

Semantics of the Simple Language

To give an operational semantics of the simple language, we postulate the following transition axioms and rules:

- 1. $\langle \mathsf{skip}, \sigma \rangle \rightarrow \langle E, \sigma \rangle$
- 2. $\langle u := t, \sigma \rangle \rightarrow \langle E, \sigma[u := \sigma(t)] \rangle$
- 3. $\frac{\langle S_1, \sigma \rangle \to \langle S_2, \tau \rangle}{\langle S_1; S, \sigma \rangle \to \langle S_2; S, \tau \rangle}$
- 4. $\langle \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}, \sigma \rangle \to \langle S_1, \sigma \rangle$, when $\sigma \models B$
- 5. (if *B* then S_1 else S_2 fi, σ) \rightarrow (S_2 , σ), when $\sigma \models \neg B$
- 6. \langle while B do S od, $\sigma \rangle \rightarrow \langle S$; while B do S od, $\sigma \rangle$, when $\sigma \models B$
- 7. (while *B* do *S* od, σ) \rightarrow (*E*, σ), when $\sigma \models \neg B$

Transition Systems

- The preceding set of transition axioms and rules can be seen as a formal proof system, called a transition system.
- A transition $\langle S, \sigma \rangle \to \langle R, \tau \rangle$ is possible if it can be deduced in the transition system.
- This semantic is "high level", as assignments and evaluations of Boolean expressions are done in one step.

Transition Sequences and Computations

 \bullet A transition sequence of S starting in σ is a finite or infinite sequence of configurations

$$\langle S_0, \sigma_0 \rangle (= \langle S, \sigma \rangle) \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \cdots \rightarrow \langle S_i, \sigma_i \rangle \rightarrow \cdots$$

- A computation of S starting in σ is a transition sequence of S starting in σ that cannot be extended.
- A computation of *S* terminates in τ if it is finite and its last configuration is $\langle E, \tau \rangle$.
- A computation of *S diverges* if it is infinite.

An Example

Consider the following program

$$S \equiv a[0] := 1$$
; $a[1] := 0$; while $a[x] \neq 0$ do $x := x + 1$ od

- **•** Let σ be a state in which x is 0.
- $igcolon{}{\bullet}$ Let σ' stand for $\sigma[a[0]:=1][a[1]:=0]$.
- lacktriangle The following is the computation of S starting in σ :

Finite Transition Sequences

- For partial correctness of sequential programs, we will need only to talk about finite transition sequences.
- lacktriangle To that end, we take the reflexive transitive closure o^* of o.
- So, $\langle S, \sigma \rangle \rightarrow^* \langle R, \tau \rangle$ holds when
 - 1. $\langle R, \tau \rangle = \langle S, \sigma \rangle$ or
 - 2. $\langle S_0, \sigma_0 \rangle (= \langle S, \sigma \rangle) \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \cdots \rightarrow \langle S_n, \sigma_n \rangle (= \langle R, \tau \rangle)$ is a finite transition sequence.

Input/Output Semantics

- \bigcirc Let Σ be the set of all proper states.
- The partial correctness semantics is a mapping

$$\mathcal{M}\llbracket S \rrbracket : \Sigma \to \mathcal{P}(\Sigma)$$

with

$$\mathcal{M}\llbracket S \rrbracket(\sigma) = \{\tau \mid \langle S, \sigma \rangle \to^* \langle E, \tau \rangle \}.$$

- \P Extensions of $\mathcal{M}[\![S]\!]$

 - * For $X \subseteq \Sigma \cup \{\bot\}$, $\mathcal{M}[\![S]\!](X) = \bigcup_{\sigma \in X} \mathcal{M}[\![S]\!](\sigma)$.

Validity of a Hoare Triple

- **②** Let $\llbracket p \rrbracket$ denote $\{\sigma \in \Sigma \mid \sigma \models p\}$, i.e., the set of states where *p* holds.
- The Hoare triple $\{p\}$ S $\{q\}$ is valid in the sense of partial correctness, written $\models \{p\}$ S $\{q\}$, if

$$\mathcal{M}[S]([p]) \subseteq [q].$$

About the While Loop

- **③** Let Ω be a program such that $\mathcal{M}[\![\Omega]\!](\sigma) = \emptyset$, for any σ .
- Define the following sequence of deterministic programs:

```
(while B do S od)<sup>0</sup> = \Omega

(while B do S od)<sup>k+1</sup> = if B then S; (while B do S od)<sup>k</sup> else skip fi
```

- ightharpoonup For example, (**while** B **do** S **od**) 2
 - = if B then S; (while B do S od)¹ else skip fi
 - = if B then S; if B then S; (while B do S od)⁰ else skip fi
 - else skip fi
 - = if B then S; if B then S; Ω else skip fi

else skip fi

Lemmas for $\mathcal{M}[S]$

- 1. $\mathcal{M}[\![S]\!]$ is monotonic, i.e., $X \subseteq Y \subseteq \Sigma \cup \{\bot\}$ implies $\mathcal{M}[\![S]\!](X) \subseteq \mathcal{M}[\![S]\!](Y)$.
- 2. $\mathcal{M}[S_1; S_2](X) = \mathcal{M}[S_2](\mathcal{M}[S_1](X)).$
- 3. $\mathcal{M}[[(S_1; S_2); S_3]](X) = \mathcal{M}[[S_1; (S_2; S_3)]](X).$
- 4. $\mathcal{M}[\![\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi}]\!](X) = \mathcal{M}[\![S_1]\!](X \cap [\![B]\!]) \cup \mathcal{M}[\![S_2]\!](X \cap [\![\neg B]\!]).$
- 5. $\mathcal{M}[\![$ while B do S od $\![\!] = \bigcup_{k=0}^{\infty} \mathcal{M}[\![$ (while B do S od) $\![\!]$.

Soundness

Theorem (Soundness): The proof system *PD* is sound for partial correctness of programs in the simple programming language, i.e.,

$$\vdash_{PD} \{p\} \ S \ \{q\} \text{ implies } \models \{p\} \ S \ \{q\}.$$

The proof is by induction, i.e., by proving that (1) the Hoare triples in all axioms of PD are valid and (2) all proof rules of PD are sound.

Note: a proof rule is sound if the validity of the Hoare triples in the premises implies the validity of the Hoare triple in the conclusion.

 \P skip: $\mathcal{M}[\![skip]\!]([\![p]\!]) \subseteq [\![p]\!]$

$$\begin{split} & \mathcal{M} \llbracket \mathbf{skip} \rrbracket (\llbracket \rho \rrbracket) = \bigcup_{\sigma \in \llbracket \rho \rrbracket} \{ \tau \mid \langle \mathbf{skip}, \sigma \rangle \to^* \langle E, \tau \rangle \} \\ & = \bigcup_{\sigma \in \llbracket \rho \rrbracket} \{ \sigma \} = \llbracket \rho \rrbracket \subseteq \llbracket \rho \rrbracket. \end{split}$$

 $igotharpoonup Assignment: \mathcal{M} \llbracket u := t
rbracket (\llbracket p \llbracket t/u
rbracket)
rbracket \subseteq \llbracket p
rbracket$

It can be shown that (1) $\sigma(s[u:=t]) = \sigma[u:=\sigma(t)](s)$ and (2) $\sigma \models p[t/u]$ iff $\sigma[u:=\sigma(t)] \models p$.

Let $\sigma \in \llbracket p[t/u] \rrbracket$.

From the transition axiom for assignment,

$$\mathcal{M}\llbracket u := t \rrbracket(\sigma) = \{\sigma[u := \sigma(t)]\}.$$

Since $\sigma \models p[t/u]$ iff $\sigma[u := \sigma(t)] \models p$, we have

$$\mathcal{M}\llbracket u := t \rrbracket(\sigma) \subseteq \llbracket p \rrbracket$$
 and hence $\mathcal{M}\llbracket u := t \rrbracket(\llbracket p \llbracket t/u \rrbracket) \rrbracket) \subseteq \llbracket p \rrbracket$.

Composition: $\mathcal{M}[S_1]([p]) \subseteq [r]$ and $\mathcal{M}[S_2]([r]) \subseteq [q]$ imply $\mathcal{M}[S_1; S_2]([p]) \subseteq [q]$.

```
From the monotonicity of \mathcal{M}[S_2], \mathcal{M}[S_2](\mathcal{M}[S_1]([p])) \subseteq \mathcal{M}[S_2]([r]) \subseteq [q].
```

By an earlier lemma, $\mathcal{M}\llbracket S_2 \rrbracket (\mathcal{M}\llbracket S_1 \rrbracket (\llbracket p \rrbracket)) = \mathcal{M}\llbracket S_1; S_2 \rrbracket (\llbracket p \rrbracket).$

⋄ Conditional: $\mathcal{M}[S_1]([p \land B]) \subseteq [q]$ and $\mathcal{M}[S_2]([p \land \neg B]) \subseteq [q]$ imply $\mathcal{M}[if B \text{ then } S_1 \text{ else } S_2 \text{ fi}]([p]) \subseteq [q].$

This follows from an earlier lemma, $\mathcal{M}[\![\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi}]\!](X) = \mathcal{M}[\![S_1]\!](X \cap [\![B]\!]) \cup \mathcal{M}[\![S_2]\!](X \cap [\![\neg B]\!]).$

While: $\mathcal{M}[S]([p \land B]) \subseteq [p]$ implies $\mathcal{M}[\text{while } B \text{ do } S \text{ od}]([p]) \subseteq [p \land \neg B].$

From Lemma 5 for $\mathcal{M}[\![\cdot]\!]$, it boils down to show that $\bigcup_{k=0}^{\infty} \mathcal{M}[\![(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k]\!]([\![p]\!]) \subseteq [\![p \land \neg B]\!].$

We prove by induction that, for all $k \ge 0$,

$$\mathcal{M}[\![(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k]\!]([\![p]\!]) \subseteq [\![p \land \neg B]\!].$$

The base case k = 0 is clear.


```
\mathcal{M}[(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^{k+1}]([p])
= { definition of (while B do S od)^{k+1} }
      \mathcal{M}[if B \text{ then } S; (\text{while } B \text{ do } S \text{ od})^k \text{ else skip } fi[([p])]
= \{ \text{Lemma 4 for } \mathcal{M} \llbracket \cdot \rrbracket \}
      \mathcal{M}[S]; (while B do S od)^k[([p \land B]]) \cup \mathcal{M}[skip]([p \land \neg B]])
= { Lemma 2 for \mathcal{M}[\cdot] and semantics of skip }
      \mathcal{M}[(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k](\mathcal{M}[S][p \land B]) \cup [p \land \neg B]
\subseteq { the premise and monotonicity of \mathcal{M}\llbracket \cdot \rrbracket }
      \mathcal{M}[\![(\mathbf{while}\ B\ \mathbf{do}\ S\ \mathbf{od})^k]\!]([\![p]\!]) \cup [\![p\land \neg B]\!]
\llbracket p \land \neg B \rrbracket \ (\cup \llbracket p \land \neg B \rrbracket)
```


igotimes Consequence: p o p', $\mathcal{M}[\![S]\!]([\![p']\!])\subseteq [\![q']\!]$, and q' o q imply $\mathcal{M}[\![S]\!]([\![p]\!])\subseteq [\![q]\!]$.

First of all, $\llbracket p \rrbracket \subseteq \llbracket p' \rrbracket$ and $\llbracket q' \rrbracket \subseteq \llbracket q \rrbracket$.

From the monotonicity of $\mathcal{M}[S]$, $\mathcal{M}[S]([p]) \subseteq \mathcal{M}[S]([p']) \subseteq [q'] \subseteq [q]$.

About Completeness

- Assertions that we use for a programming language often involve numbers/integers.
- According to Gödel's First Incompleteness Theorem, there is no complete proof system (that is consistent/sound) for the first-order theory of arithmetic.
- We therefore assume that all true assertions are given (as axioms).
- The completeness of Hoare Logic then is actually relative to the truth of all assertions.

Weakest Liberal Precondition

- Let S be a program in the simple programming language.
- For a set Φ of states, we define

$$wlp(S, \Phi) = \{ \sigma \mid \mathcal{M}[S](\sigma) \subseteq \Phi \}.$$

- $wlp(S, \Phi)$ is called the weakest liberal precondition of S with respect to Φ .
- Informally, $wlp(S, \Phi)$ is the set of all states σ such that whenever S is activated in σ and properly terminates, the output state is in Φ .

Definability of $wlp(S, \Phi)$

- \P An assertion p defines a set Φ of states if $\llbracket p \rrbracket = \Phi$.
- Assuming that the assertion language includes addition and multiplication of natural numbers,

```
there is an assertion p defining wlp(S, [q]), i.e., with [p] = wlp(S, [q]).
```

- Proof of the above statement requires a technique called Gödelization and will not be given here.
- We will write wlp(S, q) to denote the assertion p such that $[\![p]\!] = wlp(S, [\![q]\!])$.

Lemmas for wlp

- 1. $wlp(\mathbf{skip}, q) \leftrightarrow q$.
- 2. $wlp(u := t, q) \leftrightarrow q[t/u]$.
- 3. $wlp(S_1; S_2, q) \leftrightarrow wlp(S_1, wlp(S_2, q))$.
- 4. $wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q)\leftrightarrow (B\wedge wlp(S_1,q))\vee (\neg B\wedge wlp(S_2,q)).$
- 5. $wlp(\textbf{while } B \textbf{ do } S_1 \textbf{ od}, q) \land B \rightarrow wlp(S_1, wlp(\textbf{while } B \textbf{ do } S_1 \textbf{ od}, q)).$
- 6. w/p(while B do S_1 od, q) $\land \neg B \rightarrow q$.
- 7. $\models \{p\} \ S \ \{q\} \ (\text{i.e., } \mathcal{M} \llbracket S \rrbracket (\llbracket p \rrbracket) \subseteq \llbracket q \rrbracket) \text{ iff } p \to wlp(S,q).$

Completeness

Theorem (Completeness): The proof system *PD* is complete for partial correctness of programs in the simple programming language, i.e.,

$$\models \{p\} \ S \ \{q\} \ \text{implies} \ \vdash_{PD} \{p\} \ S \ \{q\}.$$

- We first prove a special case of the theorem: for all S and q, $\models \{wlp(S,q)\}\ S\ \{q\}$ implies $\vdash_{PD} \{wlp(S,q)\}\ S\ \{q\}$.
- ❖ As \models {wlp(S,q)} S {q} (i.e., $\mathcal{M}[S]([wlp(S,q)]) \subseteq [q])$ always holds, the case simplifies to $\vdash_{PD} \{wlp(S,q)\} S \{q\}$, for all S and q.
- This is done by induction.
- The base cases (skip and assignment) are trivial.

• Conditional: $S \equiv \mathbf{if} \ B \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \ \mathbf{fi}$.

To prove $\vdash_{PD} \{wlp(S,q)\}\ S\ \{q\}$ via the conditional rule, we need

- $(1) \vdash_{PD} \{wlp(S,q) \land B\} S_1 \{q\} \text{ and }$
- $(2) \vdash_{PD} \{ wlp(S,q) \land \neg B \} S_2 \{q\}.$

From the induction hypothesis, we have

- $(3) \vdash_{PD} \{wlp(S_1,q)\} S_1 \{q\} \text{ and }$
- $(4) \vdash_{PD} \{wlp(S_2,q)\} S_2 \{q\}.$

Applying the consequence rule, we are done if

- (5) $wlp(S,q) \wedge B \rightarrow wlp(S_1,q)$ and
- (6) $wlp(S, q) \land \neg B \rightarrow wlp(S_2, q)$.
- (5) and (6) follows from Lemma 4 for wlp.

A proof of (5) $wlp(S,q) \wedge B \rightarrow wlp(S_1,q)$:

```
wlp(S,q) \wedge B
\leftrightarrow { definition of S }
       wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi},q)\wedge B
\leftrightarrow { Lemma 4 for wlp }
       ((B \land wlp(S_1, q)) \lor (\neg B \land wlp(S_2, q))) \land B
\leftrightarrow { distribute \land over \lor }
       ((B \land wlp(S_1, q)) \land B) \lor ((\neg B \land wlp(S_2, q)) \land B)
\leftrightarrow { commutativity of \land, B \land B \leftrightarrow B, and \neg B \land B \leftrightarrow false }
       (B \wedge wlp(S_1, q)) \vee false
\leftrightarrow { A \lor false \leftrightarrow A }
       B \wedge wlp(S_1, q)
\rightarrow { B \land A \rightarrow A }
       wlp(S_1, q)
```


• While: $S \equiv$ while Bdo S_1 od.

To prove $\vdash_{PD} \{ wlp(S,q) \} S \{q\}$, we apply Lemma 6 for wlp and the consequence rule to reduce the goal to $\vdash_{PD} \{ wlp(S,q) \} S \{ wlp(S,q) \land \neg B \}$.

Using the while rule, the goal is further reduced to $\vdash_{PD} \{ wlp(S,q) \land B \} S_1 \{ wlp(S,q) \}.$

From Lemma 5 for wlp and the consequence rule, we need $\vdash_{PD} \{wlp(S_1, wlp(S, q))\}\ S_1 \{wlp(S, q)\}.$

This follows from the induction hypothesis, which states that $\vdash_{PD} \{wlp(S_1, q')\}\ S_1\ \{q'\}$, for all q'.

- **•** Now suppose $\models \{p\} \ S \ \{q\}$.
- **•** From Lemma 7 for wlp, $p \rightarrow wlp(S, q)$.
- From $\vdash_{PD} \{wlp(S,q)\}\ S\ \{q\}$ and the consequence rule, $\vdash_{PD} \{p\}\ S\ \{q\}$.