Suggested Solutions for Homework Assignment #1

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: \neg , $\{\land, \lor\}, \rightarrow, \leftrightarrow, \vdash$.

1. (30 points) Prove that every propositional formula has an equivalent formula in the conjunctive normal form and also an equivalent formula in the disjunctive normal form. (Hint: by induction on the structure of a formula, dealing with both cases simultaneously)

Solution. Let us first review some preliminaries. A (non-empty) clause is a disjunction of one or more literals such as $p \lor \neg q \lor r$, while a (non-empty) term/product is a conjunction of one or more literals such as $\neg p \land q \land \neg r$. (Note: the name "term" as defined here is not commonly used in propositional logic. However, it is adequate in light of the notion of a term in algebraic expressions. An alternative name is "product".) So, a formula is in conjunctive normal form (CNF) if it is a conjunction of one or more clauses. A formula is in disjunctive normal form (DNF) if it is a disjunction of one or more terms. A clause by itself is in CNF (a one-clause CNF) and, when seen as a disjunction of one-literal terms, is also in DNF. Similarly, for a term. A single literal is a special case of a clause and also of a term.

The complement of a clause (term), after the negation is pushed to the literal level, becomes a term (clause), e.g., $\neg(p \lor \neg q \lor r) \Leftrightarrow \neg p \land q \land \neg r$. Taking this one level up, the complement of a formula in CNF (DNF), after the negation is pushed to the literal level, becomes a formula in DNF (CNF), e.g., $\neg((p \lor \neg q) \land (q \lor r)) \Leftrightarrow (\neg p \land q) \lor (\neg q \land \neg r)$.

Now we prove the problem statement by induction on the structure of a given formula φ .

Base case (φ is just a propositional symbol): a propositional symbol can be seen as a single-literal clause or term and so is already in CNF and in DNF.

Inductive step: there are three cases.

- (a) $\varphi = \neg \psi$: let ψ^C be a formula equivalent to ψ in CNF and ψ^D an equivalent formula in DNF (guaranteed to exist by the induction hypothesis). Pushing the negation at the front of $\neg \psi^C$ ($\neg \psi^D$) to the literal level, we get a formula equivalent to φ in DNF (CNF).
- (b) $\varphi = \varphi_1 \wedge \varphi_2$: let $\varphi_1^C (\varphi_2^C)$ be a formula equivalent to $\varphi_1 (\varphi_2)$ in CNF and $\varphi_1^D (\varphi_2^D)$ an equivalent formula in DNF. The formula $\varphi_1^C \wedge \varphi_2^C$ is equivalent to φ and readily in CNF.

To obtain a formula equivalent to φ in DNF, suppose $\varphi_1^D = t_1 \lor t_2 \lor \cdots \lor t_l$ and $\varphi_2^D = u_1 \lor u_2 \lor \cdots \lor u_m$, where t_i 's and u_j 's are terms. Then, by repeatedly distributing the top-level \land in $\varphi_1^D \land \varphi_2^D$ to the term level, we obtain a formula $\bigvee_{1 \le i \le l, 1 \le j \le m} (t_i \land u_j)$ in DNF that is equivalent to φ .

(c) $\varphi = \varphi_1 \lor \varphi_2$: analogous to the case of $\varphi = \varphi_1 \land \varphi_2$.

2. (40 points) Prove, using *Natural Deduction* (in the sequent form), the validity of the following sequents:

 $\begin{array}{ll} \text{(a)} & (p \rightarrow r) \land (q \rightarrow r) \vdash p \lor q \rightarrow r \\ & Solution. \end{array}$

 α :

$$\begin{array}{c} (p \to r) \land (q \to r), p \lor q, p \vdash (p \to r) \land (q \to r) \\ \hline (p \to r) \land (q \to r), p \lor q, p \vdash p \to r \\ \hline (p \to r) \land (q \to r), p \lor q, p \vdash p \to r \\ \hline (p \to r) \land (q \to r), p \lor q, p \vdash r \end{array} (Hyp) (Hyp)$$

 β :

$$\frac{(p \to r) \land (q \to r), p \lor q, q \vdash (p \to r) \land (q \to r)}{(p \to r) \land (q \to r), p \lor q, q \vdash q \to r} \xrightarrow{(Hyp)} (Hyp)$$

$$\frac{(p \to r) \land (q \to r), p \lor q, q \vdash q \to r}{(p \to r) \land (q \to r), p \lor q, q \vdash r} \xrightarrow{(Hyp)} (\to E)$$

 $\begin{array}{l} (\mathbf{b}) \ \vdash (p \land q \to r) \to (p \to (q \to r)) \\ Solution. \end{array}$

$$\frac{\overline{p \land q \rightarrow r, p, q \vdash p \land q \rightarrow r}}{p \land q \rightarrow r, p, q \vdash p} (Hyp) \qquad \overline{p \land q \rightarrow r, p, q \vdash q} (Hyp) (\land I)$$

$$\frac{\overline{p \land q \rightarrow r, p, q \vdash p \land q}}{p \land q \rightarrow r, p, q \vdash r} (\land I)$$

$$\frac{\overline{p \land q \rightarrow r, p, q \vdash r}}{p \land q \rightarrow r, p \vdash q \rightarrow r} (\rightarrow I)$$

$$\frac{\overline{p \land q \rightarrow r, p \vdash q \rightarrow r}}{(\rightarrow I)} (\rightarrow I)$$

$$\frac{\overline{p \land q \rightarrow r \vdash p \rightarrow (q \rightarrow r)}}{(\rightarrow I)} (\rightarrow I)$$

- 3. (30 points) Prove, using *Natural Deduction* (in the sequent form), the validity of the following sequents:
 - $\begin{array}{l} (\mathbf{a}) \ \vdash (\neg p \lor q) \to (p \to q) \\ Solution. \end{array}$

 α :

$$\frac{ \frac{ -p \lor q, p, \neg p \vdash p}{\neg p \lor q, p, \neg p \vdash \neg p} }{ (Hyp)} \frac{ (Hyp) }{\neg p \lor q, p, \neg p \vdash \neg p} ((Hyp) }{ (\neg E)}$$

 $\begin{array}{l} (\mathbf{b}) \ \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p \\ Solution. \end{array}$

$$\begin{array}{c} \hline (p \rightarrow q) \rightarrow p, \neg p \vdash (p \rightarrow q) \rightarrow p & ^{(Hyp)} \\ \hline (p \rightarrow q) \rightarrow p, \neg p \vdash p & (\rightarrow E) & \hline (p \rightarrow q) \rightarrow p, \neg p \vdash \neg \neg p & (\neg I) \\ \hline & \hline (p \rightarrow q) \rightarrow p, \neg p \vdash p \wedge \neg p & (\neg I) \\ \hline & \hline (p \rightarrow q) \rightarrow p \vdash \neg \neg p & (\neg \neg E) \\ \hline & \hline (p \rightarrow q) \rightarrow p \vdash p & (\rightarrow I) \\ \hline & \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p & (\rightarrow I) \end{array}$$

 α :

$$\frac{\hline{(p \to q) \to p, \neg p, p, \neg q \vdash p}^{(Hyp)}}{(p \to q) \to p, \neg p, p, \neg q \vdash \neg p} (Hyp)} \xrightarrow{(p \to q) \to p, \neg p, p \vdash q}_{(\neg E)} (\neg E)$$