
Software Specification and Verification [Compiled on November 15, 2022] Fall 2022

Suggested Solutions for Homework Assignment #2

We assume the binding powers of the logical connectives and the entailment symbol decrease
in this order: ¬, {∀, ∃}, {∧, ∨}, →, ↔, `.

1. (20 points) Please provide a precise description, using formulae in first-order logic, for
each of the following requirements. The functions/constants and predicates you may use
are: +, ×, 0, 1, 2, <, =, ≤, plus those introduced in the requirement statements. Make
assumptions where you see necessary.

(a) The array A[0..N − 1] (of integers) represents a max heap with A[0] as the root.

Solution. ∀i(0 ≤ i ≤ N −1→ ((2× i+1 ≤ N −1→ A[i] ≥ A[2× i+1])∧ (2× i+2 ≤
N − 1→ A[i] ≥ A[2× i+ 2]))

(b) The array A[0..N − 1] (of integers) is cyclically sorted in an increasing order. (Note:
3, 4, 0, 1, 2, for example, is a cyclically sorted list of integers.)

Solution.
∀i(0 ≤ i < N − 1→ A[i] ≤ A[i+ 1])
∨
((A[N − 1] ≤ A[0])∧
∃j((0 < j ≤ N − 1)∧
∀i(0 ≤ i < j − 1→ A[i] ≤ A[i+ 1])∧
∀i(j ≤ i < N − 1→ A[i] ≤ A[i+ 1])))

2. (20 points) Prove, using Natural Deduction, the validity of the following sequents:

(a) ∀x(P (x)→ Q(x)) ` ∀xP (x)→ ∀xQ(x)

Solution. Assume w does not occur free either in P (x) or in Q(x).

α

(Hyp)
∀x(P (x)→ Q(x)), ∀xP (x) ` ∀xP (x)

(∀E)
∀x(P (x)→ Q(x)),∀xP (x) ` P (w)

(→E)
∀x(P (x)→ Q(x)),∀xP (x) ` Q(w)

(∀I)
∀x(P (x)→ Q(x)),∀xP (x) ` ∀xQ(x)

(→I)
∀x(P (x)→ Q(x)) ` ∀xP (x)→ ∀xQ(x)

α :

(Hyp)
∀x(P (x)→ Q(x)),∀xP (x) ` ∀x(P (x)→ Q(x))

(∀E)
∀x(P (x)→ Q(x)), ∀xP (x) ` P (w)→ Q(w)

(b) ` ∃x∀yP (x, y)→ ∀y∃xP (x, y)

Solution. Assume both w and z do not occur free in P (x, y).
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(Hyp)
∃x∀yP (x, y) ` ∃x∀yP (x, y)

(Hyp)
∃x∀yP (x, y), ∀yP (z, y) ` ∀yP (z, y)

(∀E)
∃x∀yP (x, y),∀yP (z, y) ` P (z, w)

(∃I)
∃x∀yP (x, y),∀yP (z, y) ` ∃xP (x,w)

(∃E)
∃x∀yP (x, y) ` ∃xP (x,w)

(∀I)
∃x∀yP (x, y) ` ∀y∃xP (x, y)

(→I)
` ∃x∀yP (x, y)→ ∀y∃xP (x, y)

3. (20 points) Prove, using Natural Deduction for the first-order logic with equality (=),
that = is an equivalence relation between terms, i.e., the following are valid sequents, in
addition to the obvious “` t = t” (Reflexivity), which follows from the =-Introduction
rule.

(a) t2 = t1 ` t1 = t2 (Symmetry)

Solution.

(Hyp)
t2 = t1 ` t2 = t1

(= I)
t2 = t1 ` t2 = t2

(= E)
t2 = t1 ` t1 = t2

(b) t1 = t2, t2 = t3 ` t1 = t3 (Transitivity)

Solution.

(Hyp)
t1 = t2, t2 = t3 ` t2 = t3

(Hyp)
t1 = t2, t2 = t3 ` t1 = t2

(= E)
t1 = t2, t2 = t3 ` t1 = t3

4. (20 points) Taking the preceding valid sequents as axioms, prove using Natural Deduction
the following derived rules for equality.

(a)
Γ ` t2 = t1

(= Symmetry)
Γ ` t1 = t2

Solution.

(Axiom(Symmetry))
Γ, t2 = t1 ` t1 = t2

(→I)
Γ ` t2 = t1 → t1 = t2 Γ ` t2 = t1

(→E)
Γ ` t1 = t2

(b)
Γ ` t1 = t2 Γ ` t2 = t3

(= Transitivity)
Γ ` t1 = t3

Solution.

α Γ ` t1 = t2
(→E)

Γ ` t2 = t3 → t1 = t3 Γ ` t2 = t3
(→E)

Γ ` t1 = t3

α :

(Axiom(Transitivity))
Γ, t1 = t2, t2 = t3 ` t1 = t3

(→I)
Γ, t1 = t2 ` t2 = t3 → t1 = t3

(→I)
Γ ` t1 = t2 → (t2 = t3 → t1 = t3)
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5. (20 points) A first-order theory for groups contains the following three axioms:

• ∀a∀b∀c(a · (b · c) = (a · b) · c). (Associativity)

• ∀a((a · e = a) ∧ (e · a = a)). (Identity)

• ∀a((a · a−1 = e) ∧ (a−1 · a = e)). (Inverse)

Here · is the binary operation, e is a constant, called the identity, and (·)−1 is the inverse
function which gives the inverse of an element. Let M denote the set of the three axioms.
Prove, using Natural Deduction plus the derived rules in the preceding problem, the
validity of the following sequent:

M ` ∀a∀b∀c((a · b = a · c)→ b = c).

(Hint: a typical proof in algebra books is the following: b = e·b = (a−1 ·a)·b = a−1 ·(a·b) =
a−1 · (a · c) = (a−1 · a) · c = e · c = c.)

Solution.

α δ
(= E)

M,x · y = x · z ` y = z
(→I)

M ` (x · y = x · z)→ y = z
(∀I)

M ` ∀c((x · y = x · c)→ y = c)
(∀I)

M ` ∀b∀c((x · b = x · c)→ b = c)
(∀I)

M ` ∀a∀b∀c((a · b = a · c)→ b = c)

α :

β γ
(= E)

M,x · y = x · z ` (x−1 · x) · y = y

(Hyp)
M,x · y = x · z ` ∀a∀b∀c(a · (b · c) = (a · b) · c)

(∀E)
M,x · y = x · z ` ∀b∀c(x−1 · (b · c) = (x−1 · b) · c)

(∀E)
M,x · y = x · z ` ∀c(x−1 · (x · c) = (x−1 · x) · c)

(∀E)
M,x · y = x · z ` x−1 · (x · y) = (x−1 · x) · y

(= E)
M,x · y = x · z ` x−1 · (x · y) = y

β :

(Hyp)
M,x · y = x · z ` ∀a(a · a−1 = e ∧ a−1 · a = e)

(∀E)
M,x · y = x · z ` x · x−1 = e ∧ x−1 · x = e

(∧E2)
M,x · y = x · z ` x−1 · x = e

(= Symmetry)
M,x · y = x · z ` e = x−1 · x

γ :

(Hyp)
M,x · y = x · z ` ∀a(a · e = a ∧ e · a = a)

(∀E)
M,x · y = x · z ` y · e = y ∧ e · y = y

(∧E2)
M,x · y = x · z ` e · y = y
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δ :

(Hyp)
M,x · y = x · z ` x · y = x · z

(= Symmetry)
M,x · y = x · z ` x · z = x · y

the proof tree is similar to α

M,x · y = x · z ` x−1 · (x · z) = z
(= E)

M,x · y = x · z ` x−1 · (x · y) = z

4


