
Software Specification and Verification [Compiled on November 1, 2022] Fall 2022

Homework Assignment #4

Due Time/Date

2:20PM Wednesday, November 9, 2022. Late submission will be penalized by 20% for each

working day overdue.

How to Submit

Please use a word processor or scan hand-written answers to produce a single PDF file. Name

your file according to this pattern: “b097050xx-hw4”. Upload the PDF file to the NTU COOL

site for Software Specification and Verification 2022. You may discuss the problems with others,

but copying answers is strictly forbidden.

Problems

We assume the binding powers of the logical connectives and the entailment symbol decrease

in this order: ¬, {∀, ∃}, {∧, ∨}, →, ↔, `.

1. Prove that the following annotated program segments are correct:

(a) (10 points)

{true}
if x < y then x, y := y, x fi

{x ≥ y}

(b) (10 points)

{g = 0 ∧ p = n ∧ n ≥ 1}
while p ≥ 2 do

g, p := g + 1, p− 1

od

{g = n− 1}

(c) (20 points) For this program, prove its total correctness.

{y > 0 ∧ (x ≡ m (mod y))}
while x ≥ y do

x := x− y

od

{(x ≡ m (mod y)) ∧ x < y}

1



2. (20 points) Given a sequence x1, x2, · · ·, xn of real numbers (not necessarily positive), a

maximum subsequence xi, xi+1, · · ·, xj is a subsequence of consecutive elements from the

given sequence such that the sum of the numbers in the subsequence is maximum over

all subsequences of consecutive elements. Below is a program that determines the sum of

such a sequence.

Global_Max := 0;

Suffix_Max := 0;

for i := 1 to n do

if x[i] + Suffix_Max > Global_Max then

Suffix_Max := Suffix_Max + x[i];

Global_Max := Suffix_Max

else if x[i] + Suffix_Max > 0 then

Suffix_Max := Suffix_Max + x[i]

else Suffix_Max := 0

od;

Annotate the program into a standard proof outline, showing clearly the partial correctness

of the program; a standard proof outline is essentially an annotated program where every

statement is preceded by a pre-condition and the entire program is followed by a post-

condition.

3. (40 points) Given a directed graph represented by an n × n adjacency matrix (named

Know[1..n, 1..n]), the following program determines whether there exists an i (the

sink or “celebrity” of the graph) such that all the entries in the i-th column (except for

the ii-th entry) are 1, and all the entries in the i-th row (except for the ii-th entry) are 0.

i, j, next := 1, 2, 3;

while next <= n+1 do

if Know[i,j] then i := next

else j := next;

next := next + 1;

od

if i = n+1 then candidate := j

else candidate := i;

wrong := false;

k := 1;

Know[candidate,candidate] := false;

while not wrong and k <= n do

if Know[candidate,k] then wrong := true;

2



if not Know[k,candidate] then

if candidate <> k then wrong := true;

k := k + 1;

od

if not wrong then celebrity := candidate

else celebrity := 0;

Annotate the program into a standard proof outline, showing clearly the partial correctness

of the program.

3


