

Propositional Logic

(Based on [Gallier 1986], [Goubault-Larrecq and Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Introduction

- Logic concerns two concepts:
 - 🌞 truth (in a specific or general context)
 - provability (of truth from assumed truth)
- Formal (symbolic) logic approaches logic by rules for manipulating symbols:
 - syntax rules: for writing statements (or formulae). (There are also semantic rules determining whether a statement is true or false in a context or mathematical structure.)
 - inference rules: for obtaining true statements from other true statements.
- We shall introduce two main branches of formal logic:
 - 🌞 propositional logic
 - first-order logic (predicate logic/calculus)
- This lecture covers propositional logic.

Why We Need Logic

- Correctness of software hinges on a precise statement of its requirements.
- Logical formulae give the most precise kind of statements about software requirements.
- 😚 The fact that "a software program satisfies a requirement" is very much the same as "a mathematical structure satisfies a logical formula":

$$prog \models req \ \ \mathsf{vs.} \ \ M \models \varphi$$

- To prove (formally verify) that a software program is correct, one may utilize the kind of inferences seen in formal logic.
- The verification may be done manually, semi-automatically, or fully automatically.

Propositions

- A proposition is a statement that is either true or false such as the following:
 - Leslie is a teacher.
 - 🏓 Leslie is rich.
 - 🌞 Leslie is a pop singer.
- Simplest (atomic) propositions may be combined to form compound propositions:
 - Leslie is not a teacher.
 - Either Leslie is not a teacher or Leslie is not rich.
 - 🌞 If Leslie is a pop singer, then Leslie is rich.

Inferences

- We are given the following assumptions:
 - Leslie is a teacher.
 - 🌻 Either Leslie is not a teacher or Leslie is not rich.
 - 🌞 If Leslie is a pop singer, then Leslie is rich.
- We wish to conclude the following:
 - Leslie is not a pop singer.
- The above process is an example of *inference* (deduction). Is it correct?

Symbolic Propositions

- Propositions are represented by *symbols*, when only their truth values are of concern.
 - P: Leslie is a teacher.
 - 🌞 Q: Leslie is rich.
 - 🌞 R: Leslie is a pop singer.
- Compound propositions can then be more succinctly written.
 - not P: Leslie is not a teacher.
 - not P or not Q: Either Leslie is not a teacher or Leslie is not rich.
 - R implies Q: If Leslie is a pop singer, then Leslie is rich.

Symbolic Inferences

- We are given the following assumptions:
 - P (Leslie is a teacher.)
 - not P or not Q (Either Leslie is not a teacher or Leslie is not rich.)
- We wish to conclude the following:
 - not R (Leslie is not a pop singer.)
- Correctness of the inference may be checked by asking:
 - Is (P and (not P or not Q) and (R implies Q)) implies (not R) a tautology (valid formula)?
 - Or, is (A and (not A or not B) and (C implies B)) implies (not C) a tautology (valid formula)?

Propositional Logic: Syntax

- Vocabulary:
 - * A countable set \mathcal{P} of *proposition symbols* (variables): P, Q, R, \ldots (also called *atomic propositions*);
 - ***** Logical connectives (operators): \neg , \land , \lor , \rightarrow , and \leftrightarrow and sometimes the constant \bot (false);
 - Auxiliary symbols: "(", ")".
- How to read the logical connectives:
 - ♠ ¬ (negation): not
 - st \wedge (conjunction): and
 - ∀ (disjunction): or
 - $ilde{*}
 ightarrow$ (implication): implies (or if \ldots , then \ldots)

Propositional Logic: Syntax (cont.)

- Propositional Formulae:
 - * Any $A \in \mathcal{P}$ is a formula and so is \bot (these are the "atomic" formula).
 - **☀** If A and B are formulae, then so are $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, and $(A \leftrightarrow B)$.
- **③** A is called a *subformula* of $\neg A$, and A and B subformulae of $(A \land B)$, $(A \lor B)$, $(A \to B)$, and $(A \leftrightarrow B)$.
- Precedence (for avoiding excessive parentheses):
 - $ilde{*}\hspace{0.1cm} A \wedge B o C$ means $((A \wedge B) o C)$.
 - $ilde{*}$ $A o B \lor C$ means $(A o (B \lor C))$.
 - \clubsuit $A \rightarrow B \rightarrow C$ means $(A \rightarrow (B \rightarrow C))$.
 - 🌞 More about this later ...

About Boolean Expressions

- Boolean expressions are essentially propositional formulae, though they may allow more things as atomic formulae.
- Boolean expressions in various styles:

$$\stackrel{\text{\@iffered{\phi}}}{=} (x \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y}) \land x$$

$$(x + y + \overline{z}) \cdot (\overline{x} + \overline{y}) \cdot x$$

$$\red (a \lor b \lor \overline{c}) \land (\overline{a} \lor \overline{b}) \land a$$

🌻 etc.

igspace Propositional formula: $(P \lor Q \lor \neg R) \land (\neg P \lor \neg Q) \land P$

Propositional Logic: Semantics

The meanings of propositional formulae may be conveniently summarized by the truth table:

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$	$A \leftrightarrow B$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

The meaning of \bot is always F (false).

There is an implicit inductive definition in the table. We shall try to make this precise.

Truth Assignment and Valuation

- The semantics of propositional logic assigns a truth function to each propositional formula.
- Let BOOL be the set of truth values $\{T, F\}$.
- $igoplus A \ truth \ assignment$ (valuation) is a function from $\mathcal P$ (the set of proposition symbols) to BOOL.
- Let PROPS be the set of all propositional formulae.
- A truth assignment v may be extended to a valuation function \hat{v} from PROPS to BOOL as follows:

Truth Assignment and Valuation (cont.)

$$\hat{v}(\bot) = F$$

 $\hat{v}(P) = v(P)$ for all $P \in \mathcal{P}$
 $\hat{v}(P) =$ as defined by the table below, otherwise

$\hat{v}(A)$	$\hat{v}(B)$	$\hat{v}(\neg A)$	$\hat{v}(A \wedge B)$	$\hat{v}(A \vee B)$	$\hat{v}(A \to B)$	$\hat{v}(A \leftrightarrow B)$
T	T	F	Τ	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

So, the truth value of a propositional formula is completely determined by the truth values of its subformulae.

Truth Assignment and Satisfaction

- We say $v \models A$ (v satisfies A) if $\hat{v}(A) = T$.
- So, the symbol ⊨ denotes a binary relation, called satisfaction, between truth assignments and propositional formulae.
- $v \not\models A \ (v \ falsifies \ A) \ if \ \hat{v}(A) = F.$

Satisfaction

 \odot Alternatively (in a more generally applicable format), the satisfaction relation \models may be defined as follows:

$$v \not\models \bot$$
 $v \models P$ \iff $v(P) = T$, for all $P \in \mathcal{P}$
 $v \models \neg A$ \iff $v \not\models A$ (it is not the case that $v \models A$)
 $v \models A \land B$ \iff $v \models A$ and $v \models B$
 $v \models A \lor B$ \iff $v \not\models A$ or $v \models B$
 $v \models A \to B$ \iff $v \not\models A$ or $v \models B$
 $v \models A \to B$ \iff $(v \models A \text{ and } v \models B)$
or $(v \not\models A \text{ and } v \not\models B)$

Object vs. Meta Language

- The language that we study is referred to as the *object* language.
- The language that we use to study the object language is referred to as the *meta* language.
- For example, not, and, and or that we used to define the satisfaction relation \models are part of the meta language.

Satisfiability

- \odot A proposition A is *satisfiable* if there exists an assignment v such that $v \models A$.
 - $\stackrel{\text{\ensuremath{\not{\circ}}}}{}$ $v(P) = F, v(Q) = T \models (P \lor Q) \land (\neg P \lor \neg Q)$
- A proposition is *unsatisfiable* if no assignment satisfies it.
 - $(\neg P \lor Q) \land (\neg P \lor \neg Q) \land P$ is unsatisfiable.
- The problem of determining whether a given proposition is satisfiable is called the satisfiability problem.

Tautology and Validity

- A proposition A is a *tautology* if every assignment satisfies A, written as $\models A$.
 - $= A \vee \neg A$
 - $(A \land B) \rightarrow (A \lor B)$
- The problem of determining whether a given proposition is a tautology is called the *tautology problem*.
- A proposition is also said to be valid if it is a tautology.
- So, the problem of determining whether a given proposition is valid (a tautology) is also called the validity problem.

Note: the notion of a tautology is restricted to propositional logic. In first-order logic, we also speak of valid formulae.

Validity vs. Satisfiability

Theorem

A proposition A is valid (a tautology) if and only if $\neg A$ is unsatisfiable.

So, there are two ways of proving that a proposition A is a tautology:

- A is satisfied by every truth assignment (or A cannot be falsified by any truth assignment).
- \bigcirc $\neg A$ is unsatisfiable.

Relating the Logical Connectives

Lemma

$$\models (A \leftrightarrow B) \leftrightarrow ((A \to B) \land (B \to A))$$

$$\models (A \to B) \leftrightarrow (\neg A \lor B)$$

$$\models (A \lor B) \leftrightarrow \neg(\neg A \land \neg B)$$

$$\models \bot \leftrightarrow (A \land \neg A)$$

Note: these equivalences imply that some connectives could be dispensed with. We normally want a smaller set of connectives when analyzing properties of the logic and a larger set when actually using the logic.

Normal Forms

- A literal is an atomic proposition or its negation.
- A propositional formula is in Conjunctive Normal Form (CNF) if it is a conjunction of disjunctions of literals.
 - $(P \lor Q \lor \neg R) \land (\neg P \lor \neg Q) \land P$
 - $\overset{\hspace{0.1em}\mathsf{\#}}{} \ (P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)$
- A propositional formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions of literals.
 - $(P \land Q \land \neg R) \lor (\neg P \land \neg Q) \lor P$
- A propositional formula is in Negation Normal Form (NNF) if negations occur only in literals.
 - CNF or DNF is also NNF (but not vice versa).
 - $(P \land \neg Q) \land (P \lor (Q \land \neg R))$ in NNF, but not CNF or DNF.
- Every propositional formula has an equivalent formula in each of these normal forms.

Semantic Entailment

- igoplus Consider two sets of propositions Γ and Δ .
- We say that $v \models \Gamma$ (v satisfies Γ) if $v \models B$ for every $B \in \Gamma$; analogously for Δ .
- We say that Δ is a *semantic consequence* of Γ if every assignment that satisfies Γ also satisfies Δ , written as $\Gamma \models \Delta$.
 - \clubsuit $A, A \rightarrow B \models A, B$
 - \clubsuit $A \rightarrow B, \neg B \models \neg A$

Sequents

- \bullet A (propositional) sequent is an expression of the form $\Gamma \vdash \Delta$, where $\Gamma = A_1, A_2, \dots, A_m$ and $\Delta = B_1, B_2, \dots, B_n$ are finite (possibly empty) sequences of (propositional) formulae.
- In a sequent $\Gamma \vdash \Delta$, Γ is called the *antecedent* (also *context*) and Δ the *consequent*.

Note: many authors prefer to write a sequent as $\Gamma \longrightarrow \Delta$ or $\Gamma \Longrightarrow \Delta$, while reserving the symbol \vdash for provability (deducibility) in the proof (deduction) system under consideration.

Sequents (cont.)

- A sequent $A_1, A_2, \dots, A_m \vdash B_1, B_2, \dots, B_n$ is falsifiable if there exists a valuation v such that $v \models (A_1 \land A_2 \land \dots \land A_m) \land (\neg B_1 \land \neg B_2 \land \dots \land \neg B_n)$.
 - * $A \lor B \vdash B$ is falsifiable, as $v(A) = T, v(B) = F \models (A \lor B) \land \neg B$.
- ❖ A sequent $A_1, A_2, \dots, A_m \vdash B_1, B_2, \dots, B_n$ is valid if, for every valuation $v, v \models A_1 \land A_2 \land \dots \land A_m \rightarrow B_1 \lor B_2 \lor \dots \lor B_n$.
 - $A \vdash A, B$ is valid.
 - $A, B \vdash A \land B$ is valid.
- A sequent is valid if and only if it is not falsifiable.
- In the following, we will use only sequents of this simpler form: $A_1, A_2, \dots, A_m \vdash C$, where C is a formula.

Inference Rules

- Inference rules allow one to obtain true statements from other true statements.
- 😚 Below is an inference rule for conjunction.

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land I)$$

In an inference rule, the upper sequents (above the horizontal line) are called the *premises* and the lower sequent is called the *conclusion*.

Proofs

- A deduction tree is a tree where each node is labeled with a sequent such that, for every internal (non-leaf) node,
 - 🌞 the label of the node corresponds to the conclusion and
 - * the labels of its children correspond to the premises of an instance of an inference rule.
- A proof tree is a deduction tree, each of whose leaves is labeled with an axiom.
- The root of a deduction or proof tree is called the conclusion.
- A sequent is provable if there exists a proof tree of which it is the conclusion.

Detour: Another Style of Proofs

Proofs may also be carried out in a calculational style (like in algebra); for example,

$$(A \lor B) \to C$$

$$\equiv \{A \to B \equiv \neg A \lor B\}$$

$$\neg (A \lor B) \lor C$$

$$\equiv \{\text{de Morgan's law }\}$$

$$(\neg A \land \neg B) \lor C$$

$$\equiv \{\text{distributive law }\}$$

$$(\neg A \lor C) \land (\neg B \lor C)$$

$$\equiv \{A \to B \equiv \neg A \lor B\}$$

$$(A \to C) \land (B \to C)$$

$$\Rightarrow \{A \land B \Rightarrow A\}$$

$$(A \to C)$$

igoplus Here, \Rightarrow corresponds to semantical entailment and \equiv to mutual semantical entailment. Both are transitive.

Detour: Some Laws for Calculational Proofs

- Equivalence is commutative and associative
 - $\bullet A \leftrightarrow B \equiv B \leftrightarrow A$
 - $\overset{\text{\@}}{=}$ $A \leftrightarrow (B \leftrightarrow C) \equiv (A \leftrightarrow B) \leftrightarrow C$
- $\bigcirc \bot \lor A \equiv A \lor \bot \equiv A$
- $\bigcirc \neg A \land A \equiv \bot$
- $\bigcirc A \rightarrow B \equiv \neg A \lor B$
- $\bigcirc A \rightarrow \bot \equiv \neg A$

- $\bigcirc A \wedge B \Rightarrow A$

Natural Deduction in the Sequent Form

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} (\land I)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \land B} (\land I)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land E_1)$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land E_2)$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor I_1)$$

$$\frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor I_2)$$

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma \vdash C} (\lor E)$$

Natural Deduction (cont.)

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (\to I) \qquad \frac{\Gamma \vdash A \to B \qquad \Gamma \vdash A}{\Gamma \vdash B} (\to E)$$

$$\frac{\Gamma, A \vdash B \land \neg B}{\Gamma \vdash \neg A} (\neg I) \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash \neg A}{\Gamma \vdash B} (\neg E)$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A} (\neg \neg I) \qquad \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} (\neg \neg E)$$

These inference rules collectively are called System *ND* (the propositional part).

A Proof in Propositional ND

Below is a partial proof of the validity of $P \wedge (\neg P \vee \neg Q) \wedge (R \rightarrow Q) \rightarrow \neg R$ in ND, where γ denotes $P \wedge (\neg P \vee \neg Q) \wedge (R \rightarrow Q)$.

$$\frac{\vdots}{\frac{\gamma, R \vdash R \to Q}{\gamma, R \vdash R}} \frac{(Ax)}{\gamma, R \vdash R} \frac{\vdots}{(Ax)} \frac{\vdots}{\frac{\gamma, R, Q \vdash P \land \neg P}{\gamma, R \vdash \neg Q}} (\neg I)$$

$$\frac{\frac{\gamma, R \vdash Q \land \neg Q}{\gamma, R \vdash Q \land \neg Q}}{\frac{P \land (\neg P \lor \neg Q) \land (R \to Q) \vdash \neg R}{\vdash P \land (\neg P \lor \neg Q) \land (R \to Q) \to \neg R}} (\to I)$$

Soundness and Completeness

Theorem

System ND is sound, i.e., if a sequent $\Gamma \vdash C$ is provable in ND, then $\Gamma \vdash C$ is valid.

Theorem

System ND is complete, i.e., if a sequent $\Gamma \vdash C$ is valid, then $\Gamma \vdash C$ is provable in ND.

Compactness

A set Γ of propositions is satisfiable if some valuation satisfies every proposition in Γ . For example, $\{A \vee B, \neg B\}$ is satisfiable.

Theorem

For any (possibly infinite) set Γ of propositions, if every finite non-empty subset of Γ is satisfiable then Γ is satisfiable.

Proof hint: by contradiction and the completeness of ND.

Consistency

- A set Γ of propositions is *consistent* if there exists some proposition B such that the sequent $\Gamma \vdash B$ is not provable.
- **Otherwise**, Γ is *inconsistent*; e.g., $\{A, \neg(A \lor B)\}$ is inconsistent.

Lemma

For System ND, a set Γ of propositions is inconsistent if and only if there is some proposition A such that both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$ are provable.

Theorem

For System ND, a set Γ of propositions is satisfiable if and only if Γ is consistent.