Suggested Solutions for Homework Assignment \#2

We assume the binding powers of the logical connectives and the entailment symbol decrease in this order: $\neg,\{\forall, \exists\},\{\wedge, \vee\}, \rightarrow, \leftrightarrow, \vdash$.

1. (20 points) In HW\#0, we have investigated Algorithm originalEuclid that computes the greatest common divisor of two input numbers which are assumed to be positive integers. We are now concerned with a precise statement of the correctness requirement on its output. Please write a first-order formula describing the requirement on the output of originalEuclid, using the first-order language $\{+,-, \times, 0,1,<\}$, which includes symbols for the usual arithmetic functions $(+,-$, and \times), constants (0 and $1)$, and predicates ($<$ and \leq) for integers; " $=$ " is implicitly assumed to be a binary predicate. That is, write a defining formula for a predicate, say isGCD, such that is $G C D(m, n$, originalEuclid $(m, n))$ holds if originalEuclid is correct, assuming that both m and n are greater than 0 .
Note: you certainly would bring up the notion of " a divides b ", perhaps in the form of a predicate $\operatorname{divides}(a, b)$, or alternatively $a \mid b$, but this is not directly available in the allowed language and you would need to spell out the defining formula.
Solution. Let isGCD (x, y, z) be

$$
z>0 \wedge \operatorname{divides}(z, x) \wedge \operatorname{divides}(z, y) \wedge \forall w(\operatorname{divides}(w, x) \wedge \operatorname{divides}(w, y) \rightarrow \operatorname{divides}(w, z))
$$

where $\operatorname{divides}(a, b)$ denotes that a divides b, formally $\exists q(b=a \times q)$.
2. (20 points) Prove, using Natural Deduction, the validity of the following sequents:
(a) $\forall x(P(x) \rightarrow Q(x)) \vdash \forall x P(x) \rightarrow \forall x Q(x)$

Solution. Assume w does not occur free either in $P(x)$ or in $Q(x)$.

$$
\frac{\alpha \quad \frac{\left.\frac{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x P(x)}{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash P(w)}(H y p)_{(\forall E)}^{(} \rightarrow E\right)}{\frac{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash Q(w)}{\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)}(\forall I)}(\rightarrow I)}{\forall x(P(x) \rightarrow Q(x)) \vdash \forall x P(x) \rightarrow \forall x Q(x)}(\rightarrow)
$$

α :
(b) $\vdash \exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y)$

Solution. Assume both w and z do not occur free in $P(x, y)$.

$$
\frac{\overbrace{\exists x \forall y P(x, y) \vdash \exists x \forall y P(x, y)}(H y p) \quad \frac{\nexists x \forall y P(x, y), \forall y P(z, y) \vdash \forall y P(z, y)}{(H y p)}(\forall E)}{(\forall x \forall y P(x, y), \forall y P(z, y) \vdash P(z, w)}(\exists I)
$$

3. (20 points) Prove, using Natural Deduction for the first-order logic with equality (=), that $=$ is an equivalence relation between terms, i.e., the following are valid sequents, in addition to the obvious " $\vdash t=t$ " (Reflexivity), which follows from the $=$-Introduction rule.
(a) $t_{2}=t_{1} \vdash t_{1}=t_{2}$ (Symmetry)

Solution.

$$
\frac{\overline{t_{2}=t_{1} \vdash t_{2}=t_{1}}(H y p) \quad \overline{t_{2}=t_{1} \vdash t_{2}=t_{2}}}{t_{2}=t_{1} \vdash t_{1}=t_{2}}(=I)
$$

(b) $t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}$ (Transitivity)

Solution.

$$
\frac{\overline{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{2}=t_{3}}(\text { Hyp }) \quad \overline{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{2}}}{t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}}\left(\begin{array}{l}
\text { (Hyp) } \\
(=E)
\end{array}\right.
$$

4. (20 points) Taking the preceding valid sequents as axioms, prove using Natural Deduction the following derived rules for equality.
(a) $\frac{\Gamma \vdash t_{2}=t_{1}}{\Gamma \vdash t_{1}=t_{2}}(=$ Symmetry $)$

Solution.

$$
\begin{array}{cc}
\left.\overline{\Gamma, t_{2}=t_{1} \vdash t_{1}=t_{2}}(\text { Axiom(Symmetry })\right) \\
\hline \Gamma \vdash t_{2}=t_{1} \rightarrow t_{1}=t_{2}
\end{array}(\rightarrow I) \quad \Gamma \vdash t_{2}=t_{1}(\rightarrow E)
$$

(b) $\frac{\Gamma \vdash t_{1}=t_{2} \quad \Gamma \vdash t_{2}=t_{3}}{\Gamma \vdash t_{1}=t_{3}}(=$ Transitivity $)$

Solution.

$$
\frac{\frac{\alpha \quad \Gamma \vdash t_{1}=t_{2}}{\Gamma \vdash t_{2}=t_{3} \rightarrow t_{1}=t_{3}}(\rightarrow E)}{\Gamma \vdash t_{2}=t_{3}}(\rightarrow E)
$$

$\alpha:$

$$
\begin{gathered}
\frac{\left.\overline{\Gamma, t_{1}=t_{2}, t_{2}=t_{3} \vdash t_{1}=t_{3}}(\text { Axiom(Transitivity })\right)}{\Gamma, t_{1}=t_{2} \vdash t_{2}=t_{3} \rightarrow t_{1}=t_{3}}(\rightarrow I) \\
\Gamma \vdash t_{1}=t_{2} \rightarrow\left(t_{2}=t_{3} \rightarrow t_{1}=t_{3}\right)
\end{gathered}(\rightarrow I)
$$

5. (20 points) A first-order theory for groups contains the following three axioms:

- $\forall a \forall b \forall c(a \cdot(b \cdot c)=(a \cdot b) \cdot c)$. (Associativity)
- $\forall a((a \cdot e=a) \wedge(e \cdot a=a))$. (Identity)
- $\forall a\left(\left(a \cdot a^{-1}=e\right) \wedge\left(a^{-1} \cdot a=e\right)\right)$. (Inverse)

Here \cdot is the binary operation, e is a constant, called the identity, and $(\cdot)^{-1}$ is the inverse function which gives the inverse of an element. Let M denote the set of the three axioms subsequently, for brevity.
Prove, using Natural Deduction plus the derived rules in the preceding problem, the validity of the following sequent:
$M \vdash \forall a \forall b \forall c(((a \cdot b=e) \wedge(b \cdot a=e) \wedge(a \cdot c=e) \wedge(c \cdot a=e)) \rightarrow b=c)$, which says that every element has a unique inverse.
(Hint: a typical proof in algebra books is the following: $b=b \cdot e=b \cdot(a \cdot c)=(b \cdot a) \cdot c=$ $e \cdot c=c$.)
Solution. We use N to denote $x \cdot y=e \wedge y \cdot x=e \wedge x \cdot z=e \wedge z \cdot x=e$, i.e., the assumption in the target formula with the universally quantified variables replaced by fresh free variables.
α :
β :

$$
\begin{aligned}
& \frac{M, N \vdash x \cdot y=e \wedge(y \cdot x=e \wedge(x \cdot z=e \wedge z \cdot x=e))}{(H y p)} \\
& { }^{\left(\wedge E_{2}\right)} \\
& \frac{M, N \vdash y \cdot x=e \wedge(x \cdot z=e \wedge z \cdot x=e)}{\frac{M, N \vdash x \cdot z=e \wedge z \cdot x=e}{\frac{M, N \vdash x \cdot z=e}{\left(\wedge E_{2}\right)}}\left(\wedge E_{1}\right)} \quad M, N \vdash y \cdot e=y \cdot(x \cdot z) \\
& M, N \vdash y \cdot(x \cdot z)=y \cdot(x \cdot z)
\end{aligned}(=E)
$$

$\gamma:$

$$
\begin{gathered}
\frac{M, N \vdash \forall a \forall b \forall c(a \cdot(b \cdot c)=(a \cdot b) \cdot c)}{(H y p)}_{(\forall E)}^{\frac{M, N \vdash \forall b \forall c(y \cdot(b \cdot c)=(y \cdot b) \cdot c)}{M, N \vdash \forall c(y \cdot(x \cdot c)=(y \cdot x) \cdot c)}}(\forall E) \\
\frac{M, N \vdash y \cdot(x \cdot z)=(y \cdot x) \cdot z}{}
\end{gathered}
$$

$\delta:$

$$
\frac{\frac{\text { similar to } \beta}{M, N \vdash(y \cdot x) \cdot z=e \cdot z} \quad \frac{\text { similar to } \alpha}{M, N \vdash e \cdot z=z}}{M, N \vdash(y \cdot x) \cdot z=z}(=\text { Transitivity })
$$

