
Software Specification and Verification [December 20, 2023] Fall 2023

Final

Important Notes

This is an open-book exam. You may consult any book, paper, note, or on-line resource, but

discussion with others (in person or via a network) is strictly forbidden.

Problems 2 and 5 require electronic submission. Please pack all files for the two problems

in one single .zip file and email it to the instructor (tsay@ntu.edu.tw).

Problems

1. (20 %) Prove, using Natural Deduction (in the sequent form), the validity of the following

sequents.

(a) ¬p ∨ ¬q ⊢ ¬(p ∧ q)

(b) ∀x(∃y(A ∧B)) ⊢ ∀x(∃yA) ∧ ∀x(∃yB)

2. (20 %) Consider the following definition of is_even in Coq.

From Coq Require Import Arith.

Open Scope nat_scope.

Fixpoint is_even (n : nat) :=

match n with

| O => True

| S O => False

| S (S m) => is_even m

end.

Lemma double_is_even (n : nat) : is_even (2 * n).

Proof.

induction n.

(* to be completed *)

Qed.

Complete the proof of the lemma double_is_even in Coq. (Hint: Nat.double and lem-

mas in the Nat module are useful.)

Please write down the proof script on the exam paper and include the corresponding

self-contained .v file in the single .zip file for the instructor.

1

3. (10 %) Why the law of Distributivity of Disjunction, namely wp(S,Q1) ∨ wp(S,Q2) ≡
wp(S,Q1∨Q2), works only for deterministic S but not nondeterministic S? Please explain

with an example.

4. (10 %) Prove that |= wlp(S1;S2, q) ↔ wlp(S1,wlp(S2, q)) which we claimed when proving

the completeness of System PD (for the validity of a Hoare triple with partial correctness

semantics).

Here, assuming a sufficiently expressive assertion language, wlp(S, q) denotes the assertion

p such that [[p]] = wlp(S, [[q]]), where [[p]] is defined as {σ ∈ Σ | σ |= p} (i.e., the set

of states where p holds) and wlp(S,Φ) as {σ ∈ Σ | M[[S]](σ) ⊆ Φ}. Recall that, for

σ ∈ Σ, M[[S]](σ) = {τ ∈ Σ | ⟨S, σ⟩ →∗ ⟨E, τ⟩}, M[[S]](⊥) = ∅, and, for X ⊆ Σ ∪ {⊥},
M[[S]](X) =

⋃
σ∈X M[[S]](σ).

5. (20 %) The following C code implements a variant of the partition function for Quick-

sort. Annotate the code to show its behavior (including particularly an adequate function

contract) and prove correctness of your annotation using Frama-C. Please write down the

annotations on the exam paper and include the corresponding self-contained .c file in the

single .zip file for the instructor.

int partition(int* a, int n)

{ int l,r,mid,tmp;

if (n <= 0) return -1;

// pivot = a[0];

l = 0;

r = n-1;

while (l < r) {

while ((l < n) && (a[l] <= a[0]))

l = l + 1;

while ((0 <= r) && (a[0] < a[r]))

r = r - 1;

if (l < r) {

tmp = a[l];

a[l] = a[r];

a[r] = tmp;

}

}

mid = r;

2

tmp = a[0];

a[0] = a[mid];

a[mid] = tmp;

return mid;

}

6. (20 %) Prove the partial correctness of the following program using the Owicki-Gries

method.

{acc = 0}

Q0 := true;
T := 0;
if Q1 then

await T ̸= 0
fi;
s0 := acc;
acc := s0 + 1;
Q0 := false;
T := 0

∥

Q1 := true;
T := 1;
if Q0 then

await T ̸= 1
fi;
s1 := acc;
acc := s1 + 1;
Q1 := false;
T := 1


{acc = 2}

3

