

Temporal Verification of Reactive Systems

(Based on Manna and Pnueli [1991,1995,1996])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Computational vs. Reactive Programs

- Computational (Transformational) Programs
 - 🌞 Run to produce a final result on termination
 - An example:

```
[ local x : integer initially x = n; y := 0; while x > 0 do x, y := x - 1, y + 2x - 1 od ]
```

- Only the initial values and the (final) result are relevant to correctness
- 🏓 Can be specified by pre and post-conditions such as
 - $\{n \geq 0\}$ $y := ? \{y = n^2\}$ or
 - $y: [n \ge 0, y = n^2]$

Computational vs. Reactive Programs (cont.)

- Reactive Programs
 - Maintaining an ongoing (typically not terminating) interaction with their environments
 - $t * ext{ } ext{ An example: } ext{ } ext{ } s: \{0,1\} ext{ } e$

```
\begin{bmatrix} l_0 : \textbf{loop forever do} \\ \begin{bmatrix} l_1 : & \text{remainder;} \\ l_2 : & \text{request}(s); \\ l_3 : & \text{critical;} \\ l_4 : & \text{release}(s); \end{bmatrix} \end{bmatrix} \parallel \begin{bmatrix} m_0 : \textbf{loop forever do} \\ \begin{bmatrix} m_1 : & \text{remainder;} \\ m_2 : & \text{request}(s); \\ m_3 : & \text{critical;} \\ m_4 : & \text{release}(s); \end{bmatrix} \end{bmatrix}
```

Must be specified and verified in terms of their behaviors, including the intermediate states

The Framework

- **©** Computational Model: for providing an abstract syntactic base
 - fair transition systems (FTS)
 - 🌞 fair discrete systems (FDS)
- Implementation Language: for describing the actual implementation; will define syntax by examples; translated into FTS or FDS for verification
- Specification Language: for specifying properties of a system;
 will use linear temporal logic (LTL)
- Verification Techniques: for verifying that an implementation satisfies its specification
 - algorithmic methods: state space exploration
 - deductive methods: mathematical theorem proving

Three Kinds of Validity

- Assertional Validity: validity of non-temporal formulae, i.e., state formulae, over an arbitrary state (valuation)
- General Temporal Validity: validity of temporal formulae over arbitrary sequences of states
- Program Validity: validity of a temporal formula over sequence of states that represent computations of the analyzed system

Variables

- Three kinds of variables will be needed:
 - Program (system) variables
 - Primed version of program variables: for referring to the values of program variables in the next state when defining a state transition
 - Specification variables: appearing only in formulae (but not in the program) that specify properties of a program
- \odot We assume that all these variables are drawn from a universal set of variables \mathcal{V} .
- For every unprimed variable $x \in \mathcal{V}$, its primed version x' is also in \mathcal{V} .
- 📀 Each variable has a type.

Assertions

- For describing a system and its specification, we assume an underlying first-order assertion language over V.
- The language provides the following elements:
 - Expressions (corresponding to first-order terms): variables, constants, and functions applied to expressions
 - Atomic formulae: propositions or boolean variables and predicates applied to expressions
 - Assertions or state formulae (corresponding to first-order formulae): atomic formulae, boolean connectives applied to formulae, and quantifiers applied to formulae

Fair Transition Systems

A fair transition system (FTS) \mathcal{P} is a tuple $\langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$:

- $V \subseteq \mathcal{V}$: a finite set of typed state variables, including data and control variables. A (type-respecting) valuation of V is called a V-state or simply state. The set of all V-states is denoted Σ_V .
- Θ: the initial condition, an assertion characterizing the initial states.
- T: a set of transitions, including the idling transition. Each transition is associated with a transition relation, relating a state and its successor state(s).

Transitions of an FTS

The transition relation of a transition $\tau \in \mathcal{T}$ is expressed as an assertion $\rho_{\tau}(V, V')$:

- Example: $x = 1 \land x' = 0$. For $s, s' \in \Sigma_V$, $\langle s, s' \rangle \models x = 1 \land x' = 0$ holds if the value of x is 1 in state s and the value of x is 0 in (the next) state s'.
- \bullet τ -successor
 - \r State s' is a au-successor of s if $\langle s, s' \rangle \models \rho_{\tau}(V, V')$
 - $\stackrel{\clubsuit}{=} \tau(s) \stackrel{\triangle}{=} \{s' \mid s' \text{ is a } \tau\text{-successor of } s\}.$
- igoplus enabledness of au
 - $\not\circledast$ $En(\tau) \stackrel{\Delta}{=} (\exists V') \rho_{\tau}(V, V').$
 - $ilde{*}\hspace{0.1cm} au$ is enabled in a state if $\mathit{En}(au)$ holds in that state.
 - $\redsymbol{*}$ τ is enabled in state s iff s has some τ -successor.

Computations of an FTS

Given an FTS $\mathcal{P} = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$, a computation of \mathcal{P} is an infinite sequence of states $\sigma : s_0, s_1, s_2, \cdots$ satisfying:

- **••** Initiation: s_0 is an initial state, i.e., $s_0 \models \Theta$.
- **Consecution**: for every $i \geq 0$, s_{i+1} is a τ -successor of state s_i , i.e., $\langle s_i, s_{i+1} \rangle \models \rho_{\tau}(V, V')$, for some $\tau \in \mathcal{T}$. In this case, we say that τ is *taken* at position i.
- **♦** Justice: for every $\tau \in \mathcal{J}$, it is never the case that τ is continuously enabled, but never taken, from some point on.
- **©** Compassion: for every $\tau \in \mathcal{C}$, it is never the case that τ is enabled infinitely often, but never taken, from some point on.

The set of all computations of \mathcal{P} is denoted by $Comp(\mathcal{P})$.

An Example Program and Its FTS

• Program ANY-Y:

$$x, y$$
: natural **initially** $x = y = 0$

$$\left[\begin{array}{c} I_0: \textbf{while } x=0 \textbf{ do} \\ \left[\begin{array}{cc} I_1: & y:=y+1; \\ I_2: \end{array}\right] & \parallel & \left[\begin{array}{cc} m_0: x:=1 \\ m_2: \end{array}\right]$$

- Informal description:
 - The program consists of an asynchronous composition of two processes.
 - One process continuously increments y as long as it finds x to be 0, while the other simply sets x to 1 (when it gets its turn to execute).
 - The executions of the program are all possible interleavings of the steps of the individual processes.

An Example Program and Its FTS (cont.)

- lacktriangledown Program A_{NY} -Y as an FTS $\mathcal{P}_{A_{NY}-Y} = \langle \textit{V}, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$:
 - * $V \stackrel{\Delta}{=} \{x, y : \text{natural}, \pi_0 : \{l_0, l_1, l_2\}, \pi_1 : \{m_0, m_1\}\}$
 - $\stackrel{\$}{\circledast} \Theta \stackrel{\triangle}{=} \pi_0 = I_0 \wedge \pi_1 = m_0 \wedge x = y = 0$
 - * $\mathcal{T} \triangleq \{ \tau_I, \tau_{l_0}, \tau_{l_1}, \tau_{m_0} \}$, whose transition relations are $\rho_I: \quad \pi_0' = \pi_0 \wedge \pi_1' = \pi_1 \wedge x' = x \wedge y' = y$, $\rho_{l_0}: \quad \pi_0 = l_0 \wedge ((x = 0 \wedge \pi_0' = l_1) \vee (x \neq 0 \wedge \pi_0' = l_2))$, etc. $\wedge \pi_1' = \pi_1 \wedge x' = x \wedge y' = y$

 - \circledast $\mathcal{C} \stackrel{\Delta}{=} \emptyset$

Program Mux

$$Q_0,\,Q_1: \mathrm{bool}$$
 initially $\,Q_0=Q_1=\mathit{false}\,$ $\,\mathcal{T}:\{0,1\}$ initially $\,\mathcal{T}=0\,$

```
P_0 :: \qquad \qquad P_1 :: \\ \begin{bmatrix} l_0 : \textbf{loop forever do} \\ \begin{bmatrix} l_1 : & \text{remainder;} \\ l_2 : & Q_0 := true; \\ l_3 : & T := 0; \\ \\ l_4 : & \textbf{await} \neg Q_1 \lor T \neq 0; \\ \\ l_5 : & \text{critical;} \\ \\ l_6 : & Q_0 := false; \end{bmatrix} \end{bmatrix} \parallel \begin{bmatrix} m_0 : \textbf{loop forever do} \\ \begin{bmatrix} m_1 : & \text{remainder;} \\ m_2 : & Q_1 := true; \\ m_3 : & T := 1; \\ m_4 : & \textbf{await} \neg Q_0 \lor T \neq 1; \\ m_5 : & \text{critical;} \\ m_6 : & Q_1 := false; \end{bmatrix}
```

Justice is sufficient in preventing individual starvation.

Strong Fairness (Compassion) Is Needed

lacktriangle Program Mux-Sem: mutual exclusion by a semaphore.

s: natural initially s = 1

```
\begin{bmatrix} I_0 : \textbf{loop forever do} \\ I_1 : \text{ remainder;} \\ I_2 : \text{ request}(s); \\ I_3 : \text{ critical;} \\ I_4 : \text{ release}(s); \end{bmatrix} \end{bmatrix} \parallel \begin{bmatrix} m_0 : \textbf{loop forever do} \\ m_1 : \text{ remainder;} \\ m_2 : \text{ request}(s); \\ m_3 : \text{ critical;} \\ m_4 : \text{ release}(s); \end{bmatrix}
```

- $\stackrel{\$}{=} \text{ request}(s) \stackrel{\Delta}{=} \langle \text{await } s > 0 : s := s 1 \rangle$
- $\stackrel{\bullet}{=}$ release(s) $\stackrel{\triangle}{=}$ s := s + 1
- $C: \{\tau_{l_2}, \tau_{m_2}\}$

Linear Temporal Logic (LTL)

- State formulae
 Constructed from the underlying assertion language
- 😚 Temporal formulae
 - 🌻 All state formulae are also temporal formulae.
 - * If p and q are temporal formulae and x a variable in \mathcal{V} , then the following are temporal formulae:
 - $m{\omega} \ \, \neg p, \, p \lor q, \, p \land q, \, p
 ightarrow q, \, p \leftrightarrow q$
 - $\bigcirc p$, $\Diamond p$, $\Box p$, $p \mathcal{U} q$, $p \mathcal{W} q$
 - \bigcirc \bigcirc p, \bigcirc p, \Leftrightarrow p, \square p, p S q, p S q
 - $\bigcirc \exists x : p, \forall x : p$

Semantics of LTL

- Temporal formulae are interpreted over an infinite sequence of states, called a model, with respect to a position in that sequence.
- We will define the satisfaction relation $(\sigma, i) \models \varphi$ (or φ holds in (σ, i)), as the formal semantics of a temporal formula φ over an infinite sequence of states $\sigma = s_0, s_1, s_2, \ldots, s_i, \ldots$ and a position $i \geq 0$.
- A sequence σ satisfies a temporal formula φ , denoted $\sigma \models \varphi$, if $(\sigma, 0) \models \varphi$.
- Variables in V are partitioned into flexible and rigid variables. A flexible variable may assume different values in different states, while a rigid variable must assume the same value in all states of a model.

Semantics of LTL (cont.)

- For a state formula p: $(\sigma, i) \models p \iff p \text{ holds at } s_i$.
- Boolean combinations of formulae:

$$(\sigma, i) \models \neg p \iff (\sigma, i) \models p \text{ does not hold.}$$

$$(\sigma, i) \models p \lor q \iff (\sigma, i) \models p \text{ or } (\sigma, i) \models q.$$

$$(\sigma,i) \models p \land q \iff (\sigma,i) \models p \text{ and } (\sigma,i) \models q.$$

$$(\sigma, i) \models p \rightarrow q \iff (\sigma, i) \models p \text{ implies } (\sigma, i) \models q.$$

$$(\sigma,i) \models p \leftrightarrow q \iff (\sigma,i) \models p \text{ if and only if } (\sigma,i) \models q.$$

Alternatively, the latter three cases can be defined in terms of \neg and \lor , namely $p \land q \stackrel{\triangle}{=} \neg (\neg p \lor \neg q), \ p \to q \stackrel{\triangle}{=} \neg p \lor q$, and $p \leftrightarrow q \stackrel{\triangle}{=} (p \to q) \land (q \to p)$.

Semantics of LTL: Future Operators

- $\bigcirc p \text{ (next } p)$: $(\sigma, i) \models \bigcirc p \iff (\sigma, i+1) \models p$.
- $\Diamond p$ (eventually p or sometime p): $(\sigma, i) \models \Diamond p \iff \text{for some } k \geq i, (\sigma, k) \models p.$
- $\Box p$ (henceforth p or always p): $(\sigma, i) \models \Box p \iff$ for every $k \geq i$, $(\sigma, k) \models p$.
- $p \ \mathcal{U} \ q \ (p \ \text{until} \ q)$: $(\sigma, i) \models p \ \mathcal{U} \ q \iff \text{for some } k \geq i, \ (\sigma, k) \models q \text{ and for every } j$ s.t. $i \leq j < k, \ (\sigma, j) \models p$.
- p W q (p wait-for q):
 (σ, i) $\models p W q \iff$ for every k ≥ i, (σ, k) $\models p$, or for some k ≥ i, (σ, k) $\models q$ and for every j, i ≤ j < k, (σ, j) $\models p$.

Semantics of LTL: Future Operators (cont.)

- lacktriangle It can be shown that, for every σ and i,
 - \bullet $(\sigma, i) \models \Diamond p$ iff $(\sigma, i) \models true \mathcal{U} p$
 - $\circledast (\sigma, i) \models \Box p \text{ iff } (\sigma, i) \models \neg \Diamond \neg p$
 - $ilde{*} \ (\sigma,i) \models p \ \mathcal{W} \ q \ \mathsf{iff} \ (\sigma,i) \models \Box p \lor p \ \mathcal{U} \ q$
- \odot So, one can also take \bigcirc and $\mathcal U$ as the primitive operators and define others in terms of \bigcirc and $\mathcal U$:

 - p W q ≜ □p ∨ p U q

Semantics of LTL: Past Operators

- $\bigcirc p$ (previous p): $(\sigma, i) \models \ominus p \iff (i > 0)$ and $(\sigma, i 1) \models p$.
- $\otimes p$ (before p): $(\sigma, i) \models \otimes p \iff (i > 0)$ implies $(\sigma, i 1) \models p$.

- $p \ S \ q \ (p \ \text{since} \ q)$: $(\sigma, i) \models p \ S \ q \iff \text{for some} \ k, \ 0 \le k \le i, \ (\sigma, k) \models q \ \text{and for}$ every $j, \ k < j \le i, \ (\sigma, j) \models p$.

Semantics of LTL: Past Operators (cont.)

• $p \ \mathcal{B} \ q \ (p \ \text{back-to} \ q)$: $(\sigma, i) \models p \ \mathcal{B} \ q \iff \text{for every } k, \ 0 \le k \le i, \ (\sigma, k) \models p, \text{ or for some } k, \ 0 \le k \le i, \ (\sigma, k) \models q \text{ and for every } j, \ k < j \le i, \ (\sigma, j) \models p.$

Semantics of LTL: Past Operators (cont.)

- igoplus It can be shown that, for every σ and i,
 - $\stackrel{\text{\ensuremath{\notle*}}}{\bullet} (\sigma, i) \models \bigcirc p \text{ iff } (\sigma, i) \models \neg \bigcirc \neg p$
 - $\red (\sigma,i) \models \Leftrightarrow p \text{ iff } (\sigma,i) \models true \ \mathcal{S} \ p$
 - $\stackrel{\$}{=} (\sigma, i) \models \Box p \text{ iff } (\sigma, i) \models \neg \diamondsuit \neg p$
 - $ilde{ ilde{*}}\;(\sigma, {\it i}) \models {\it p}\; {\it B}\; {\it q}\; {\it iff}\; (\sigma, {\it i}) \models \; {\it \sqsubseteq}\, {\it p} \lor {\it p}\; {\it S}\; {\it q}$
- \odot So, one can also take \odot and \mathcal{S} as the primitive operators and define others in terms of \odot and \mathcal{S} :

 - $ilde{ ilde{*}}$ p \mathcal{B} q $\stackrel{\Delta}{=}$ \Box p \lor p \mathcal{S} q

Semantics of LTL: Quantifiers

A sequence σ' is called a *u-variant* of σ if σ' differs from σ in at most the interpretation given to u in each state.

- $(\sigma, i) \models \exists u : \varphi \iff (\sigma', i) \models \varphi \text{ for some } u\text{-}variant } \sigma' \text{ of } \sigma.$
- $(\sigma, i) \models \forall u : \varphi \iff (\sigma', i) \models \varphi \text{ for every } u\text{-}variant } \sigma' \text{ of } \sigma.$

Alternatively,
$$\forall u \colon \varphi \stackrel{\Delta}{=} \neg (\exists u \colon \neg \varphi).$$

These definitions apply to both flexible and rigid variables.

Some LTL Conventions

- ◆ Let first abbreviate

 false, which holds only at position 0; first means "this is the first state".
- We use u^- to denote the previous value of u; by convention, u^- equals u at position 0.
 - * Example: $x = x^- + 1$.
 - In pure LTL,

(first
$$\land x = x + 1$$
) \lor (\neg first $\land \forall u$: $\ominus(x = u) \rightarrow x = u + 1$).

- We use u^+ (or u') to denote the next value of u, i.e., the value of u at the next position.
 - * Example: $x^+ = x + 1$.
 - \red In pure LTL, $\forall u \colon x = u \to \bigcirc (x = u + 1)$.
- These previous and next-value notations also apply to expressions.

Validity

- A state formula is state valid if it holds in every state.
- A temporal formula p is (temporally) valid, denoted $\models p$, if it holds in every model.
- A state formula is P-state valid if it holds in every P-accessible state (i.e., every state that appears in some computation of P).
- A temporal formula p is P-valid, denoted $P \models p$, if it holds in every computation of P.

Equivalence and Congruence

- Two formulae p and q are equivalent if $p \leftrightarrow q$ is valid. Example: $p \mathcal{W} q \leftrightarrow \Box (\diamondsuit \neg p \rightarrow \diamondsuit q)$.
- **③** Two formulae p and q are *congruent* if $\Box(p \leftrightarrow q)$ is valid. Example: $\neg \diamondsuit p$ and $\Box \neg p$ are congruent, as $\Box(\neg \diamondsuit p \leftrightarrow \Box \neg p)$ is valid.
- Two congruent formulae may replace each other in any context.

A Hierarchy of Temporal Properties

- \odot Classes of temporal properties; p, q, p_i, q_i below are arbitrary past temporal formulae
 - Safety properties: □p
 - lpha Guarantee properties: $\Diamond p$
 - $ilde{*}$ Obligation properties: $\bigwedge_{i=1}^n (\Box p_i \lor \Diamond q_i)$
 - Response properties: □◇p
 - Persistence properties: ◊□p
 - $\stackrel{*}{\gg}$ Reactivity properties: $\bigwedge_{i=1}^{n} (\Box \Diamond p_i \lor \Diamond \Box q_i)$
- The hierarchy

 $\begin{array}{ll} \mathsf{Safety} & \subseteq \mathsf{Obligation} \subseteq & \mathsf{Response} \\ \mathsf{Guarantee} & \subseteq \mathsf{Obligation} \subseteq & \mathsf{Persistence} & \subseteq \mathsf{Reactivity} \end{array}$

• Every temporal formula is equivalent to some reactivity formula.

More Common Temporal Properties

- Safety properties: $\Box p$ Example: $p \ \mathcal{W} \ q$ is a safety property, as it is equivalent to $\Box (\diamondsuit \neg p \to \diamondsuit q)$.
- Response properties
 - Canonical form: □◇p
 - * Variant: $\Box(p \to \Diamond q)$ (p leads-to q), which is equivalent to $\Box \Diamond (\neg p \ \mathcal{B} \ q)$.
- Reactivity properties: $\bigwedge_{i=1}^{n} (\Box \Diamond p_i \lor \Diamond \Box q_i)$
- (Simple) reactivity properties
 - $ilde{*}$ Canonical form: $\Box \Diamond p \lor \Diamond \Box q$
 - **≫** Variants: $\Box \Diamond p \to \Box \Diamond q$ or $\Box (\Box \Diamond p \to \Diamond q)$, which is equivalent to $\Box \Diamond q \lor \Diamond \Box \neg p$.
 - $ilde{*}$ Extended form: $\Box((p \land \Box \diamondsuit r) \to \diamondsuit q)$

Rules for Safety Properties

Rule INV

I1.
$$\Theta \to \varphi$$
I2. $\varphi \to q$
I3. $\{\varphi\} \mathcal{T} \{\varphi\}$

where $\{p\}$ \mathcal{T} $\{q\}$ means $\{p\}$ τ $\{q\}$ (i.e., $\rho_{\tau} \land p \rightarrow q'$) for every $\tau \in \mathcal{T}$

- lacktriangledown The auxiliary assertion φ is called an *inductive invariant*, as it holds initially and is preserved by every transition.
- This rule is sound and (relatively) complete for establishing P-validity of the future safety formula $\Box q$ (where q is a state formula).

A Safety Property of Program Mux-Sem

- Mutual exclusion: $\Box(\neg(\pi_0 = I_3 \land \pi_1 = m_3))$, which is not inductive.
- lacktriangle The inductive arphi needed:

$$y \ge 0 \wedge (\pi_0 = I_3) + (\pi_0 = I_4) + (\pi_1 = m_3) + (\pi_1 = m_4) + y = 1$$

where true and false are equated respectively with 1 and 0.

Rules for Response Properties

Rule J-RESP (for a just transition $au \in \mathcal{J}$)

J1.
$$\Box(p \to (q \lor \varphi))$$

J2. $\{\varphi\} \ \mathcal{T} \ \{q \lor \varphi\}$
J3. $\{\varphi\} \ \tau \ \{q\}$
 $\Box(\varphi \to (q \lor En(\tau)))$
 $\Box(p \to \Diamond q)$

This is a "one-step" rule that relies on a helpful just transition.

Analogously, there is a one-step rule that relies on a helpful compassionate transition.

Rule C-RESP (for a compassionate transition $\tau \in \mathcal{C}$)

C1.
$$\Box(p \to (q \lor \varphi))$$

C2. $\{\varphi\} \ \mathcal{T} \ \{q \lor \varphi\}$
C3. $\{\varphi\} \ \tau \ \{q\}$
C4. $\mathcal{T} - \{\tau\} \vdash \Box(\varphi \to \diamondsuit(q \lor En(\tau)))$
 $\Box(p \to \diamondsuit q)$

Premise C4 states that the proof obligation should be carried out for a smaller program with $\mathcal{T} - \{\tau\}$ as the set of transitions.

Rule M-RESP (monotonicity) and Rule T-RESP (transitivity)

$$\begin{array}{c} \Box(p \to r), \Box(t \to q) \\ \Box(r \to \Diamond t) \\ \hline \Box(p \to \Diamond q) \\ \end{array} \qquad \begin{array}{c} \Box(p \to \Diamond r) \\ \hline \Box(r \to \Diamond q) \\ \hline \Box(p \to \Diamond q) \\ \end{array}$$

These rules belong to the part for proving general temporal validity. They are convenient, but not necessary when we have a relatively complete rule that reduce program validity directly to assertional validity.

A ranking function maps finite sequences of states into a well-founded set.

Rule W-RESP (with a ranking function δ)

W1.
$$\Box(p \to (q \lor \varphi))$$

W2. $\Box([\varphi \land (\delta = \alpha)] \to \Diamond[q \lor (\varphi \land \delta \prec \alpha)])$
 $\Box(p \to \Diamond q)$

Let $\mathcal{T} = \{\tau_1, \dots, \tau_n\}$. φ denotes $\varphi_1 \vee \varphi_2 \vee \dots \vee \varphi_n$ and δ is a ranking function.

Rule F-RESP

F1.
$$\Box(p \to (q \lor \varphi))$$

for $i = 1, \dots, m$
F2. $\{\varphi_i \land (\delta = \alpha)\} \ \mathcal{T} \ \{q \lor (\varphi \land (\delta \prec \alpha)) \lor (\varphi_i \land (\delta \preceq \alpha))\}$
F3. $\{\varphi_i \land (\delta = \alpha)\} \ \tau_i \ \{q \lor (\varphi \land (\delta \prec \alpha))\}$
J4. $\Box(\varphi_i \to (q \lor En(\tau_i))), \text{ if } \tau_i \in \mathcal{J}$
C4. $\mathcal{T} - \{\tau_i\} \vdash \Box(\varphi_i \to \diamondsuit(q \lor En(\tau_i))), \text{ if } \tau_i \in \mathcal{C}$
 $\Box(p \to \diamondsuit q)$

Rule F-RESP is (relatively) complete for proving the \mathcal{P} -validity of any response formula of the form $\Box(p \to \Diamond q)$.

Rules for Reactivity Properties

Rule B-REAC

B1.
$$\Box(p \to (q \lor \varphi))$$

B2. $\{\varphi \land (\delta = \alpha)\} \ \mathcal{T} \ \{q \lor (\varphi \land (\delta \preceq \alpha))\}$
B3. $\Box([\varphi \land (\delta = \alpha) \land r] \to \Diamond[q \lor (\delta \prec \alpha)])$
 $\Box((p \land \Box \Diamond r) \to \Diamond q)$

For programs without compassionate transitions, Rule B-REAC is (relatively) complete for proving the \mathcal{P} -validity of any (simple, extended) reactivity formula of the form $\Box((p \land \Box \diamondsuit r) \to \diamondsuit q)$.

Fair Discrete Systems

- igoplus An FDS ${\mathcal D}$ is a tuple $\langle V,\Theta,
 ho,{\mathcal J},{\mathcal C}
 angle$:
 - * $V \subseteq \mathcal{V}$: A finite set of typed state variables, containing data and control variables.
 - Θ : The initial condition, an assertion characterizing the initial states.
 - ρ: The transition relation, an assertion relating the values of the state variables in a state to the values in the next state.
 - * $\mathcal{J} = \{J_1, \dots, J_k\}$: A set of justice requirements (weak fairness).
 - * $C = \{\langle p_1, q_1 \rangle, \dots, \langle p_n, q_n \rangle\}$: A set of compassion requirements (strong fairness).

Fair Discrete Systems (cont.)

- So, FDS is a slight variation of the model of fair transition system.
- The main difference between the FDS and FTS models is in the representation of fairness constraints.
- FDS enables a unified representation of fairness constraints arising from both the system being verified, and the temporal property.
- A computation of \mathcal{D} is an infinite sequence of states $\sigma = s_0, s_1, s_2, \cdots$ satisfying *Initiation, Consecution, Justice*, and *Compassion* conditions.

Program Mux-Sem as an FDS

lacktriangle Program $Mux ext{-}Sem:$ mutual exclusion by a semaphore.

s: natural initially s = 1

```
 \begin{bmatrix} I_0 : \textbf{loop forever do} \\ I_1 : \text{ remainder;} \\ I_2 : \text{ request}(s); \\ I_3 : \text{ critical;} \\ I_4 : \text{ release}(s); \end{bmatrix} \end{bmatrix} \parallel \begin{bmatrix} m_0 : \textbf{loop forever do} \\ m_1 : \text{ remainder;} \\ m_2 : \text{ request}(s); \\ m_3 : \text{ critical;} \\ m_4 : \text{ release}(s); \end{bmatrix}
```

- $\stackrel{\clubsuit}{=}$ request(s) $\stackrel{\triangle}{=}$ (await s > 0 : s := s 1)
- \bullet release(s) $\stackrel{\triangle}{=} s := s + 1$
- \mathcal{C} : $\{(at_l_2 \land s > 0, at_l_3), (at_m_2 \land s > 0, at_m_3)\}$

References

- Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer-Verlag, 1991.
- Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety, Springer-Verlag, 1995.
- Z. Manna and A. Pnueli. Temporal Verification: Progress, Manuscript, 1996.