UNITY Logic
 (Based on the Modified Version in [Misra 1995])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Introduction

UNITY was once quite popular. Its logic has been modified and improved in a subsequent work.
J. Misra. A logic for concurrent programming. Journal of Computer and Software Engineering, 3(2): 239-272, 1995.

- A program consists of (1) an initial condition and (2) a set of actions (or conditional multiple-assignments), which always includes skip.
- Properties are defined in terms of

```
initially p,
* p co q, and
* p transient.
```


Program Model: Action System

- Syntax: An action system consists of
, a set of variables and
a set of actions, always including skip (which does not change the system's state).
A particular valuation of the variables is called a system or program state. An action is essentially a guarded multiple assignment to the variables.
- Semantics:

10 A system execution starts from some initial state and goes on forever.
泪 In each step of an execution, some action is selected (under some fairness constraint) and executed, resulting in a possible change of the program state.

The "Contrains" Operator

- The safety properties of a system are stated using the "contrains" (co) operator.
" p co q " (p constrains q) states that whenever p holds, q holds after the execution of any single action.
Formally, p co q in $F \triangleq\langle\forall t: t$ in $F:\{p\} t\{q\}\rangle$.
- As skip may be applied in any state, from p co q it follows that $p \Rightarrow q$.
- It also follows that once p holds, q continues to hold upto (and including) the point where p ceases to hold (if it ever does).

Usages of the co

- " $x=0$ co $x \geq 0$ ": once x becomes 0 it remains 0 until it becomes positive.
" $\forall m:: x=m$ co $x \geq m$ ": x never decreases. This is equivalent to " $\forall m:: x \geq m$ co $x \geq m$ ".
" $\forall m, n:: x, y=m, n$ co $x=m \vee y=n ": x$ and y never change simultaneously.

The unless Operator

" p unless q " was introduced in the original UNITY logic as a basic safety property:

$$
p \text { unless } q \text { in } F \triangleq \forall t: t \text { in } F:\{p \wedge \neg q\} t\{p \vee q\}
$$

If p is true at some point of computation, then it will continue to hold as long as q does not (q may never hold and p continues to hold forever).
Example: " $x \geq k$ unless $x>k$ " says that x is non-decreasing.

- unless $q \equiv p \wedge \neg q$ co $p \vee q$.
- p co $q \equiv p$ unless $\neg p \wedge q$.

Special Cases of co

p stable $\triangleq p$ co p
p invariant \triangleq (initially p) and (p stable)

Some Rules of Hoare Logic

$$
\begin{gathered}
\overline{\{p\} s\{\text { true }\}} \overline{\{\text { false }\} s\{q\}} \\
\frac{\{p\} s\{\text { false }\}}{\neg p}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\left\langle\forall j::\left\{p_{j}\right\} s\left\{q_{j}\right\}\right\rangle}{\left\{\left\langle\forall j:: p_{j}\right\rangle\right\} s\left\{\left\langle\forall j:: q_{j}\right\rangle\right\}} \frac{\left\langle\forall j::\left\{p_{j}\right\} s\left\{q_{j}\right\}\right\rangle}{\left\{\left\langle\exists j:: p_{j}\right\rangle\right\} s\left\{\left\langle\exists j:: q_{j}\right\rangle\right\}} \\
\frac{p \Rightarrow p^{\prime},\left\{p^{\prime}\right\} s\left\{q^{\prime}\right\}, q^{\prime} \Rightarrow q}{\{p\} s\{q\}}
\end{gathered}
$$

Derived Rules (Theorems)

A theorem in the form of

$$
\frac{\Delta_{1}}{\Delta_{2}}
$$

means that properties in Δ_{2} can be deduced from properties in the premise Δ_{1}.

Some Derived Rules

false co p.

- p co true.
- Conjunction and Disjunction

$$
\begin{aligned}
& p \text { co } q, p^{\prime} \text { co } q^{\prime} \\
& \hline p \vee p^{\prime} \text { co } q \vee q^{\prime} \\
& p \wedge p^{\prime} \text { co } q \wedge q^{\prime}
\end{aligned}
$$

- Stable Conjunction and Disjunction

$$
\begin{array}{crl}
p \text { co } q, r & \text { stable } \\
\hline p \wedge r \text { co } & q \wedge r \\
p \vee r \text { co } & q \vee r
\end{array}
$$

The Substitution Axiom

An invariant may be replaced by true, and vice versa, in any property of a program.
Example 1: given p co q and J invariant, we conclude

$$
p \wedge J \text { co } q, p \text { co } q \wedge J, p \wedge J \text { co } q \wedge J \text {, etc. }
$$Example 2:

$$
\frac{p \text { unless } q, \neg q \text { invariant }}{p \text { stable }}
$$

Note: there is a distinction between an invariant (of a particular program) and a valid formula (in any context). However, as part of a program property, they can be safely interchanged.

An Elimination Theorem

Free variables may be eliminated by taking conjunctions or disjunctions.

- Suppose p a property that does not name any program variable other than x.
Then, $p[x:=m$] does not contain any variable and is a constant (and hence stable).
Observe that $p=\langle\exists m: p[x:=m]: x=m\rangle$.
- An elimination theorem:

$$
x=m \quad \text { co } \quad q, \text { where } m \text { is free }
$$

p does not name m nor any program variable other than x

$$
p \mathbf{c o}\langle\exists m:: p[x:=m] \wedge q\rangle
$$

An Elimination Theorem (cont.)

$$
x=m \text { co } q \text {, where } m \text { is free }
$$

p does not name m nor any program variable other than x

$$
p \text { co }\langle\exists m:: p[x:=m] \wedge q\rangle
$$

Proof:
$x=m$ co q, premise
$p[x:=m] \wedge x=m$ co $p[x:=m] \wedge q$
, stable disjunction with $p[x:=m]$
$\langle\exists m:: p[x:=m] \wedge x=m\rangle$ co $\langle\exists m:: p[x:=m] \wedge q\rangle$
, disjuction over all m
p co $\langle\exists m:: p[x:=m] \wedge q\rangle$, simplifying the Ihs

Transient Predicate (under Weak Fairness)

Under weak fairness, it is sufficient to have a single action falsify a transient predicate.

- p transient $\triangleq\langle\exists s::\{p\} s\{\neg p\}\rangle$
- Some derived rules:

$$
(p \text { stable } \wedge p \text { transient }) \equiv \neg p
$$

(The only predicate that is both stable and transient is false.)
$\frac{p \text { transient }}{p \wedge q \text { transient }}$

Progress Properties

p ensures $q \triangleq(p \wedge \neg q$ co $p \vee q)$ and $p \wedge \neg q$ transient.
If p holds at any point, it will continue to hold as long as q does not hold; eventually q holds.
" $p \mapsto q$ " specifies that if p holds at any point then q holds or will eventually hold. Inductive definition:

$$
\frac{p \text { ensures } q}{p \mapsto q}
$$

(transitivity) $\frac{p \mapsto q, q \mapsto r}{p \mapsto r}$
(disjunction) $\frac{\langle\forall m: m \in W: p(m) \mapsto q\rangle}{\langle\exists m: m \in W: p(m)\rangle \mapsto q}$
Example: " $x \geq k \mapsto x>k$ " says that x will eventually increase.

Some Derived Rules for Progress

(Progress-Safety-Progress, PSP)

$$
\frac{p \mapsto q, r \text { co } s}{(p \wedge r) \mapsto(q \wedge s) \vee(\neg r \wedge s)}
$$

(well-founded induction)

$$
\frac{\langle\forall m:: p \wedge M=m \mapsto(p \wedge M<m) \vee q\rangle}{p \mapsto q}
$$

Asynchronous Composition

Notation: $F \| G$ (the union of F and G)

- Semantics:
* The set of variables is the union of the two sets of variables.
* The set of actions is the union of the two sets of actions. The composed system is executed as a single system.

UNITY Logic vs. Lamport's ‘Hoare Logic’

"co" enjoys the complete rule of consequence.
Rules of conjunction and disjunction also hold.

- Stronger rule of parallel composition:

$$
\frac{p \operatorname{co} q \text { in } F, p \text { co } q \text { in } G}{p \operatorname{co} q \text { in } F \rrbracket G}
$$

- But, "co" is much less convenient for sequential composition.

Union Theorems

$\frac{p \text { unless } q \text { in } F, p \text { stable in } G}{p \text { unless } q \text { in } F \| G}$
$\frac{p \text { invariant in } F, p \text { stable in } G}{p \text { invariant in } F \| G}$
p ensures q in F, p stable in G

$$
p \text { ensures } q \text { in } F \| G
$$

If any of the following properties holds in F, where p is a local predicate of F, then it also holds in $F \| G$ for any G :
p unless q, p ensures q, p invariant.
Note: Any invariant used in applying the substitution axiom to deduce a property of one module should be proved an invariant in the other module.

References

J. Misra. A Discipline of Multiprogramming, Springer, 2001.
J. Misra. A logic for concurrent programming. Journal of Computer and Software Engineering, 3(2): 239-272, 1995.

- M. Chandy and J. Misra. Parallel Program Design: A Foundation, Addison-Wesley, 1988.

