
Software Specification and Verification [January 08, 2015] Fall 2014

Final

Note

This is an open-book exam. You may consult any books, papers, or notes, but discussion with

other students or seeking outside help is strictly forbidden.

Problems

1. (10 %) Prove, using Natural Deduction (in the sequent form), the validity of the following

sequents.

(a) ` (A→ (B ∧ C))→ ((A→ B) ∧ (A→ C))

(b) ` (A ∧ (B ∨ C))→ ((A ∧B) ∨ (A ∧ C))

2. (10 %) Prove, using Coq, the validity of the following sequents. Write down the proof

scripts that you used to complete the proofs.

(a) ` (A→ (B ∧ C))→ ((A→ B) ∧ (A→ C))

(b) ` (A ∧ (B ∨ C))→ ((A ∧B) ∨ (A ∧ C))

3. (20 %) A first-order theory for groups contains the following three axioms:

• ∀a∀b∀c(a · (b · c) = (a · b) · c). (Associativity)

• ∀a((a · e = a) ∧ (e · a = a)). (Identity)

• ∀a((a · a−1 = e) ∧ (a−1 · a = e)). (Inverse)

Here · is the binary operation, e is a constant, called the identity, and (·)−1 is the inverse

function which gives the inverse of an element. Let M denote the set of the three ax-

ioms. Prove, using Natural Deduction plus the derived rules in HW#2, the validity of the

following sequents:

(a) M ` ∀a((a−1)−1 = a).

(b) M ` ∀a∀b((a · b)−1 = b−1 · a−1).

4. The following program segment sorts an array A with n elements, indexed from 1 through

n.

S1: i := 1;

S2: while i < n do

S3: j := i + 1;

S4: while j ≤ n do

1



S5: if A[i] > A[j] then

S6: A[i], A[j] := A[j], A[i];

S7: j := j + 1;

od

S8: i := i + 1;

od

(a) (5 %) Give a pair of pre and post-conditions to describe as precisely as possible

what the program segment achieves. You should assume only a simple assertion

language with constants (1, etc.), basic arithmetic operations (+,−) and equality and

inequality relations (=, <, · · ·). So, that means you will have to define the relations

that would be convenient for writing the needed assertions.

(b) (15 %) Annotate the program segment into a proof outline that clearly shows the

correctness of the program (according to the pre and post-conditions).

5. The following is a program for finding a sink in a directed graph of n nodes; a sink is a

node with indegree n−1 and outdegree 0. The graph is represented by a two-dimensional

boolean matrix M ; M [i, j] = true if and only if there is an edge from node i to node j

(where 1 ≤ i, j ≤ n).

S1: i := 1;

S2: j := 2;

S3: next := 3;

S4: while next ≤ n + 1 do

S5: if M [i, j] then i := next

S6: else j := next;

S7: next := next + 1;

od

S8: if i = n + 1 then candidate := j

S9: else candidate := i;

S10: wrong := false;

S11: k := 1;

S12: M [candidate, candidate] := false;

S13: while ¬wrong ∧ k ≤ n do

S14: if M [candidate, k] then wrong := true;

S15: if ¬M [k, candidate] then

S16: if candidate 6= k then wrong := true;

S17: k := k + 1;

od

2



(a) (5 %) Give a pair of pre and post-conditions to describe as precisely as possible what

the program segment achieves. You should assume only a simple (typed) assertion

language with boolean constants ({false, true}), integer constants (1, etc.), basic

arithmetic operations (+,−) and equality and inequality relations (=, <, · · ·). So,

that means you will have to define the relations that would be convenient for writing

the needed assertions.

(b) (15 %) Annotate the program segment into a proof outline that clearly shows the

correctness of the program (according to the pre and post-conditions).

6. (20 %) Refinement is one of the most fundamental concepts in formal software develop-

ment.

(a) Explain the concept of refinement in words (without logical notations).

(b) How is refinement formulated in Z or B (choose one of them)? Be sure to relate the

formulation to the preceding verbal description.

Please try to be brief, but to the point.

3


