
Reducibility
(Based on [Sipser 2006])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 1 / 36

Introduction

A reduction is a way of converting one problem into another
problem in such a way that a solution to the second problem can
be used to solve the first problem.

If a problem A reduces (is reducible) to another problem B , we
can use a solution to B to solve A.

Reducibility says nothing about solving A or B alone, but only
about the solvability of A in the presence of a solution to B .

Reducibility is the primary method for proving that problems are
computationally unsolvable.

Suppose that A is reducible to B . If B is decidable, then A is
decidable; equivalently, if A is undecidable, then B is
undecidable.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 2 / 36

The Halting Problem

HALTTM = {〈M ,w〉 | M is a TM and M halts on w}.

Theorem (5.1)

HALTTM is undecidable.

The idea is to reduce the acceptance problem ATM (shown to be
undecidable) to HALTTM.

Assume toward a contradiction that a TM R decides HALTTM.

We could then construct a decider S for ATM as follows.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 3 / 36

The Halting Problem (cont.)

S = “On input 〈M ,w〉, an encoding of a TM M and a string w :

1. Run TM R on input 〈M ,w〉.
2. If R rejects, reject.

3. If R accepts, simulate M on w until it halts.

4. If M has accepted, accept; it M has rejected, reject.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 4 / 36

Undecidable Problems

ETM = {〈M〉 | M is a TM and L(M) = ∅}.

Theorem (5.2)

ETM is undecidable.

Assuming that a TM R decides ETM, we construct a decider S
for ATM as follows.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 5 / 36

Undecidable Problems (cont.)

S = “On input 〈M ,w〉:
1. Construct the following TM M1.

M1 = “On input x :

1.1 If x 6= w , reject.
1.2 If x = w , run M on input w and accept if M accepts w .”

2. Run R on input 〈M1〉.
3. If R accepts, reject; if R rejects, accept.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 6 / 36

Undecidable Problems (cont.)

REGULARTM = {〈M〉 | M is a TM and L(M)
is a regular language}.

Theorem (5.3)

REGULARTM is undecidable.

Assuming that a TM R decides REGULARTM, we construct a
decider S for ATM as follows.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 7 / 36

Undecidable Problems (cont.)

S = “On input 〈M ,w〉:
1. Construct the following TM M2.

M2 = “On input x :

1.1 If x has the form 0n1n, accept.
1.2 If x does not have this form, run M on input w and accept if M

accepts w .”

2. Run R on input 〈M2〉.
3. If R accepts, accept; if R rejects, reject.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 8 / 36

Rice’s Theorem

Theorem

Any “nontrivial” property about the languages recognized by Turing
machines is undecidable.

Note 1: The theorem considers only properties that do not
distinguish equivalent Turing machine descriptions.

Note 2: A property is nontrivial if it is satisfied by some, but not
all, Turing machine descriptions.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 9 / 36

Undecidable Problems (cont.)

EQTM = {〈M1,M2〉 | M1 and M2 are TMs and
L(M1) = L(M2)}.

Theorem (5.4)

EQTM is undecidable.

Assume that a TM R decides EQTM.

We construct a decider S for ETM as follows.

S = “On input 〈M〉:
1. Run R on input 〈M,M1〉, where M1 is a TM that rejects all

inputs.
2. If R accepts, accept; if R rejects, reject.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 10 / 36

Computation Histories

Definition (5.5)

An accepting computation history for M on w is a sequence of
configurations C1,C2, · · · ,Cl , where

1. C1 is the start configuration,

2. Cl is an accepting configuration, and

3. Ci yields Ci+1, 1 ≤ i ≤ l − 1.

A rejecting computation history for M on w is defined similarly,
except that Cl is a rejecting configuration.

Computation histories are finite sequences.

Deterministic machines have at most one computation history
on any given input.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 11 / 36

Linear Bounded Automata

Definition (5.6)

A linear bounded automaton (LBA) is a restricted type of Turing
machine wherein the tape head is not permitted to move off the
portion of the tape containing the input.

So, an LBA is a TM with a limited amount of memory. It can
only solve problems requiring memory that can fit within the
tape used for the input.

(Note: Using a tape alphabet larger than the input alphabet allows
the available memory to be increased up to a constant factor.)

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 12 / 36

Linear Bounded Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 13 / 36

Linear Bounded Automata (cont.)

Despite their memory constraint, LBAs are quite powerful.

Lemma (5.8)

Let M be an LBA with q states and g symbols in the tape alphabet.
There are exactly qngn distinct configurations of M for a tape of
length n.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 14 / 36

Decidable Problems about LBAs

ALBA = {〈M ,w〉 | M is an LBA that accepts w}.

Theorem (5.9)

ALBA is decidable.

L = “On input 〈M ,w〉, an encoding of an LBA M and a string
w :

1. Simulate M on input w for qngn steps or until it halts.
2. If M has halted, accept if it has accepted and reject if it has

rejected. If M has not halted, reject.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 15 / 36

Undecidable Problems about LBAs

ELBA = {〈M〉 | M is an LBA where L(M) = ∅}.

Theorem (5.10)

ELBA is undecidable.

Assuming that a TM R decides ELBA, we construct a decider S
for ATM as follows.

S = “On input 〈M ,w〉, an encoding of a TM M and a string w :

1. Construct an LBA B from 〈M,w〉 that, on input x , decides
whether x is an accepting computation history for M on w .

2. Run R on input 〈B〉.
3. If R rejects, accept; if R accepts, reject.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 16 / 36

Undecidable Problems about LBAs (cont.)

Source: [Sipser 2006]

Three conditions of an accepting computation history:

C1 is the start configuration.

Cl is an accepting configuration.

Ci yields Ci+1, for every i , 1 ≤ i < l .

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 17 / 36

Undecidable Problems about LBAs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 18 / 36

Undecidable Problems about CFGs

ALLCFG = {〈G 〉 | G is a CFG and L(G) = Σ∗}.

Theorem (5.13)

ALLCFG is undecidable.

For a TM M and an input w , we construct a CFG G (by first
constructing a PDA) to generate all strings that are not
accepting computation histories for M on w .

That is, G generates all strings if and only if M does not accept
w .

If ALLCFG were decidable, then ATM would be decidable.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 19 / 36

Undecidable Problems about CFGs (cont.)

The PDA for recognizing computation histories that are not
accepting works as follows.

The input is regarded as a computation history of the form:

#C1#CR
2 #C3#CR

4 # · · ·#Cl#

where CR
i denotes the reverse of Ci .

The PDA nondeterministically chooses to check if one of the
following conditions holds for the input:

C1 is not the start configuration.
Cl is not an accepting configuration.
Ci does not yield Ci+1, for some i , 1 ≤ i < l .

It also accepts an input that is not in the proper form of a
computation history.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 20 / 36

Undecidable Problems about CFGs (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 21 / 36

The Post Correspondence Problem

Consider a collection of dominos such as follows:{[
b
ca

]
,

[
a

ab

]
,

[
ca
a

]
,

[
abc

c

]}
A match is a list of these dominos (repetitions permitted) where
the string of symbols on the top is the same as that on the
bottom. Below is a match:[

a
ab

] [
b
ca

] [
ca
a

] [
a

ab

] [
abc

c

]

a

a b

@
@

b

c a

HH
HH

c a

a

@
@

a

a b

HH
HH

a b c

c

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 22 / 36

The Post Correspondence Problem (cont.)

The Post correspondence problem (PCP) is to determine
whether a collection of dominos has a match.

More formally, an instance of the PCP is a collection of dominos:

P =

{[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
A match is a sequence i1, i2, · · · , il such that
ti1ti2 · · · til = bi1bi2 · · · bil .

PCP = {〈P〉 | P is an instance of the Post correspondence
problem with a match}.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 23 / 36

Undecidability of the PCP

Theorem (5.15)

PCP is undecidable

The proof is by reduction from ATM via accepting computation
histories.

From any TM M and input w we can construct an instance P
where a match is an accepting computation history for M on w .

Assume that a TM R decides PCP .

A decider S for ATM constructs an instance of the PCP that has
a match if and only if M accepts w , as follows.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 24 / 36

Undecidability of the PCP (cont.)

1. Add

[
#

#q0w1w2 · · ·wn#

]
as

[
t1
b1

]
.

2. For every a, b ∈ Γ and every q, r ∈ Q where q 6= qreject,

if δ(q, a) = (r , b,R), add

[
qa
br

]
.

3. For every a, b, c ∈ Γ and every q, r ∈ Q where q 6= qreject,

if δ(q, a) = (r , b, L), add

[
cqa
rcb

]
.

4. For every a ∈ Γ, add

[
a
a

]
.

5. Add

[
#
#

]
and

[
#
 #

]
.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 25 / 36

Undecidability of the PCP (cont.)

A start configuration (by Part 1):

#

q0 0 1 0 0

hhhhhhhhhh

Suppose δ(q0, 0) = (q7, 2,R). With Parts 2-5, the match may be
extended to:

#

q0 0 1 0 0

hhhhhhhhhh

q0 0

2 q7

hhhhhhhhhh

1

1

hhhhhhhhhh

0

0

hhhhhhhhhh

0

0

hhhhhhhhhh

#

#

hhhhhhhhhh

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 26 / 36

Undecidability of the PCP (cont.)

6. For every a ∈ Γ, add

[
aqaccept

qaccept

]
and

[
qaccepta
qaccept

]
.

#

2 1 qa 0 2

hhhhhhhhhh

2

2

hhhhhhhhhh

1

1

hhhhhhhhhh

qa 0

qa

````````

2

2

````````

#

#

````````

· · ·

· · · # qa

H
HHH

#

#

H
HHH

7. Add

[
qaccept##

#

]
.

#

# qa #

HHHH

qa # #

#

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 27 / 36



Undecidability of the PCP (cont.)

To ensure that a match starts with

[
t1
b1

]
,

S converts the collection

{[
t1
b1

]
,

[
t2
b2

]
, · · · ,

[
tk
bk

]}
to{[

?t1
?b1?

]
,

[
?t1
b1?

]
,

[
?t2
b2?

]
, · · · ,

[
?tk
bk?

]
,

[
∗3
3

]}
where

?u = ∗u1 ∗ u2 ∗ u3 ∗ · · · ∗ un

u? = u1 ∗ u2 ∗ u3 ∗ · · · ∗ un∗
?u? = ∗u1 ∗ u2 ∗ u3 ∗ · · · ∗ un∗

.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 28 / 36



Computable Functions

A Turing machine computes a function by starting with the
input to the function on the tape and halting with the output of
the function on the tape.

Definition (5.17)

A function f : Σ∗ −→ Σ∗ is a computable function if some Turing
machine M , on every input w , halts with just f (w) on its tape.

For example, all usual arithmetic operations on integers are
computable functions.

Computable functions may be transformations of machine
descriptions.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 29 / 36



Mapping (Many-One) Reducibility

Definition (5.20)

Language A is mapping reducible (many-one reducible) to language
B , written A ≤m B , if there is a computable function f : Σ∗ −→ Σ∗,
where for every w , w ∈ A⇐⇒ f (w) ∈ B .

M_A

f M_B
w f(w) yes/no

(computable func.)

This provides a way to convert questions about membership
testing in A to membership testing in B .

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 30 / 36



Mapping (Many-One) Reducibility (cont.)

Source: [Sipser 2006]

The function f is called the reduction of A to B .

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 31 / 36



Reducibility and Decidability

Theorem (5.22)

If A ≤m B and B is decidable, then A is decidable.

Let M be a decider for B and f a reduction from A to B . A
decider N for A works as follows.

N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Corollary (5.23)

If A ≤m B and A is undecidable, then B is undecidable.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 32 / 36



Reducibility and Decidability (cont.)

Theorem

HALTTM is undecidable.

We show that ATM ≤m HALTTM, i.e., a computable function f
exists (as defined by F below) such that

〈M ,w〉 ∈ ATM ⇐⇒ f (〈M ,w〉) ∈ HALTTM.

F = “On input 〈M ,w〉:
1. Construct the following machine M ′.

M ′ = “On input x :

1.1 Run M on x .
1.2 If M accepts, accept.
1.3 If M rejects, enter a loop.

2. Output 〈M ′,w〉.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 33 / 36



Reducibility and Recognizability

Theorem (5.28)

If A ≤m B and B is Turing-recognizable, then A is
Turing-recognizable.

Corollary (5.29)

If A ≤m B and A is not Turing-recognizable, then B is not
Turing-recognizable.

Corollary

If A ≤m B (i.e., A ≤m B) and A is not co-Turing-recognizable, then
B is not co-Turing-recognizable.

Note: “A is not co-Turing-recognizable” is the same as “A is not
Turing-recognizable”.

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 34 / 36



Reducibility and Recognizability (cont.)

Theorem (5.30 Part One)

EQTM is not Turing-recognizable.

We show that ATM reduces to EQTM, i.e., ATM reduces to
EQTM.

Since ATM is not Turing-recognizable, EQTM is not
Turing-recognizable.

F = “On input 〈M ,w〉:
1. Construct the following two machines M1 and M2.

M1 =“On any input: reject.”
M2 =“On any input: Run M on w . If it accepts, accept.”

2. Output 〈M1,M2〉.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 35 / 36



Reducibility and Recognizability (cont.)

Theorem (5.30 Part Two)

EQTM is not co-Turing-recognizable.

We show that ATM reduces to EQTM.

Since ATM is not co-Turing-recognizable, EQTM is not
co-Turing-recognizable.

G = “On input 〈M ,w〉:
1. Construct the following two machines M1 and M2.

M1 =“On any input: accept.”
M2 =“On any input: Run M on w . If it accepts, accept.”

2. Output 〈M1,M2〉.”

Yih-Kuen Tsay (IM.NTU) Reducibility Theory of Computing 2013 36 / 36


	Introduction
	Undecidable Problems
	Reduction via Computation Histories
	The Post Correspondence Problem
	Mapping Reducibility

