

Reducibility (Based on [Sipser 2006])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 1 / 36

3

イロト イポト イヨト イヨト

Introduction

- A reduction is a way of converting one problem into another problem in such a way that a solution to the second problem can be used to solve the first problem.
- If a problem A reduces (is reducible) to another problem B, we can use a solution to B to solve A.
- Reducibility says nothing about solving A or B alone, but only about the solvability of A in the presence of a solution to B.
- Reducibility is the primary method for proving that problems are computationally unsolvable.
- Suppose that A is reducible to B. If B is decidable, then A is decidable; equivalently, if A is undecidable, then B is undecidable.

The Halting Problem

• $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on } w \}.$

Theorem (5.1)

 $HALT_{\rm TM}$ is undecidable.

- The idea is to reduce the acceptance problem $A_{\rm TM}$ (shown to be undecidable) to $HALT_{\rm TM}$.
- \bigcirc Assume toward a contradiction that a TM R decides HALT_{TM}.
- \bigcirc We could then construct a decider S for $A_{\rm TM}$ as follows.

Yih-Kuen Tsay (IM.NTU)

Reducibility

- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Run TM R on input $\langle M, w \rangle$.
 - 2. If R rejects, reject.
 - 3. If R accepts, simulate M on w until it halts.
 - 4. If *M* has accepted, *accept*; it *M* has rejected, *reject*."

イロト イポト イヨト イヨト

Undecidable Problems

• $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem (5.2)

 $E_{\rm TM}$ is undecidable.

• Assuming that a TM *R* decides E_{TM} , we construct a decider *S* for A_{TM} as follows.

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 5 / 36

- S = "On input $\langle M, w \rangle$:
 - 1. Construct the following TM M_1 . $M_1 =$ "On input x:
 - 1.1 If $x \neq w$, *reject*.
 - 1.2 If x = w, run M on input w and *accept* if M accepts w."
 - 2. Run *R* on input $\langle M_1 \rangle$.
 - 3. If R accepts, *reject*; if R rejects, *accept*."

(日) (周) (三) (三)

• $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}.$

Theorem (5.3)

$REGULAR_{TM}$ is undecidable.

Assuming that a TM R decides REGULAR_{TM}, we construct a decider S for A_{TM} as follows.

Yih-Kuen Tsay (IM.NTU)

- S = "On input $\langle M, w \rangle$:
 - 1. Construct the following TM M_2 .
 - $M_2 =$ "On input *x*:
 - 1.1 If x has the form $0^n 1^n$, accept.
 - 1.2 If x does not have this form, run M on input w and accept if M accepts w."
 - 2. Run *R* on input $\langle M_2 \rangle$.
 - 3. If R accepts, accept; if R rejects, reject."

(日) (周) (三) (三)

Rice's Theorem

Theorem

Any "nontrivial" property about the languages recognized by Turing machines is undecidable.

- Note 1: The theorem considers only properties that do not distinguish equivalent Turing machine descriptions.
- Note 2: A property is *nontrivial* if it is satisfied by some, but not all, Turing machine descriptions.

(日) (周) (三) (三)

•
$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and} L(M_1) = L(M_2) \}.$$

Theorem (5.4)

 $EQ_{\rm TM}$ is undecidable.

- Assume that a TM R decides $EQ_{\rm TM}$.
- 📀 We construct a decider S for $E_{
 m TM}$ as follows.
- S = "On input $\langle M \rangle$:
 - 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 - 2. If R accepts, accept; if R rejects, reject."

Yih-Kuen Tsay (IM.NTU)

Computation Histories

Definition (5.5)

An accepting computation history for M on w is a sequence of configurations C_1, C_2, \cdots, C_l , where

- 1. C_1 is the start configuration,
- 2. C_l is an accepting configuration, and
- 3. C_i yields C_{i+1} , $1 \le i \le l 1$.

A rejecting computation history for M on w is defined similarly, except that C_l is a rejecting configuration.

- 😚 Computation histories are finite sequences.
- Deterministic machines have at most one computation history on any given input.

Yih-Kuen Tsay (IM.NTU)

Linear Bounded Automata

Definition (5.6)

A *linear bounded automaton* (LBA) is a restricted type of Turing machine wherein the tape head is not permitted to move off the portion of the tape containing the input.

So, an LBA is a TM with a limited amount of memory. It can only solve problems requiring memory that can fit within the tape used for the input.

(Note: Using a tape alphabet larger than the input alphabet allows the available memory to be increased up to a constant factor.)

Linear Bounded Automata (cont.)

FIGURE **5.7** Schematic of a linear bounded automaton

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 13 / 36

3

(日) (周) (三) (三)

Despite their memory constraint, LBAs are quite powerful.

Lemma (5.8)

Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng^n distinct configurations of M for a tape of length n.

Decidable Problems about LBAs

•
$$A_{\text{LBA}} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts } w \}.$$

Theorem (5.9)

 $A_{\rm LBA}$ is decidable.

• L = "On input $\langle M, w \rangle$, an encoding of an LBA M and a string w:

- 1. Simulate M on input w for qng^n steps or until it halts.
- If *M* has halted, *accept* if it has accepted and *reject* if it has rejected. If *M* has not halted, *reject*."

Yih-Kuen Tsay (IM.NTU)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Undecidable Problems about LBAs

•
$$E_{\text{LBA}} = \{ \langle M \rangle \mid M \text{ is an LBA where } L(M) = \emptyset \}.$$

Theorem (5.10)

E_{LBA} is undecidable.

- Assuming that a TM *R* decides E_{LBA} , we construct a decider *S* for A_{TM} as follows.
- $S = \text{``On input } \langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Construct an LBA *B* from $\langle M, w \rangle$ that, on input *x*, decides whether *x* is an accepting computation history for *M* on *w*.
 - 2. Run R on input $\langle B \rangle$.
 - 3. If R rejects, accept; if R accepts, reject."

Yih-Kuen Tsay (IM.NTU)

Undecidable Problems about LBAs (cont.)

Source: [Sipser 2006]

Three conditions of an accepting computation history:

- C_1 is the start configuration.
- \bigcirc C_l is an accepting configuration.
- C_i yields C_{i+1} , for every i, $1 \le i < l$.

Yih-Kuen Tsay (IM.NTU)

イロト イポト イヨト イヨト

Undecidable Problems about LBAs (cont.)

FIGURE 5.12 LBA *B* checking a TM computation history

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 18 / 36

- 4 回 ト - 4 回 ト

IM

Undecidable Problems about CFGs

•
$$ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}.$$

Theorem (5.13)

ALL_{CFG} is undecidable.

- For a TM M and an input w, we construct a CFG G (by first constructing a PDA) to generate all strings that are not accepting computation histories for M on w.
- That is, G generates all strings if and only if M does not accept w.
- \bigcirc If $ALL_{
 m CFG}$ were decidable, then $A_{
 m TM}$ would be decidable.

Yih-Kuen Tsay (IM.NTU)

Undecidable Problems about CFGs (cont.)

The PDA for recognizing computation histories that are not accepting works as follows.

• The input is regarded as a computation history of the form:

$$\#C_1 \#C_2^R \#C_3 \#C_4^R \# \cdots \#C_l \#$$

where C_i^R denotes the reverse of C_i .

- The PDA nondeterministically chooses to check if one of the following conditions holds for the input:
 - $\stackrel{\text{\tiny (b)}}{=} C_1$ is not the start configuration.
 - $\stackrel{\bullet}{=}$ C_l is not an accepting configuration.
 - $i \in C_i$ does not yield C_{i+1} , for some $i, 1 \le i < l$.
- It also accepts an input that is not in the proper form of a computation history.

Yih-Kuen Tsay (IM.NTU)

Undecidable Problems about CFGs (cont.)

FIGURE 5.14 Every other configuration written in reverse order

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 21 / 36

(日) (周) (三) (三)

The Post Correspondence Problem

Consider a collection of dominos such as follows:

$$\left\{ \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right\}$$

A match is a list of these dominos (repetitions permitted) where the string of symbols on the top is the same as that on the bottom. Below is a match:

$$\begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$$

$$\begin{vmatrix} a & b & c \\ a & b & c \end{vmatrix}$$

Yih-Kuen Tsay (IM.NTU)

Theory of Computing 2013 22 / 36

(日) (周) (三) (三)

The Post Correspondence Problem (cont.)

- The Post correspondence problem (PCP) is to determine whether a collection of dominos has a match.
- More formally, an instance of the PCP is a collection of dominos:

$$P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \cdots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$

- A match is a sequence i_1, i_2, \dots, i_l such that $t_{i_1}t_{i_2}\cdots t_{i_l} = b_{i_1}b_{i_2}\cdots b_{i_l}$.
- $PCP = \{\langle P \rangle \mid P \text{ is an instance of the Post correspondence problem with a match}\}.$

Undecidability of the PCP

Theorem (5.15)

PCP is undecidable

- The proof is by reduction from A_{TM} via accepting computation histories.
- From any TM M and input w we can construct an instance P where a match is an accepting computation history for M on w.
- Assume that a TM R decides PCP.
- A decider S for A_{TM} constructs an instance of the PCP that has a match if and only if M accepts w, as follows.

Yih-Kuen Tsay (IM.NTU)

(日) (四) (王) (王) (王)

1. Add
$$\begin{bmatrix} \# \\ \# q_0 w_1 w_2 \cdots w_n \# \end{bmatrix}$$
 as $\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$.
2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text{reject}}$,
 $if \, \delta(q, a) = (r, b, R), \, add \begin{bmatrix} qa \\ br \end{bmatrix}$.

3. For every $a, b, c \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text{reject}}$, if $\delta(q, a) = (r, b, L)$, add $\left[\frac{cqa}{rcb}\right]$.

4. For every
$$a \in \Gamma$$
, add $\left\lfloor \frac{a}{a} \right\rfloor$.
5. Add $\left\lfloor \frac{\#}{\#} \right\rfloor$ and $\left\lfloor \frac{\#}{\sqcup \#} \right\rfloor$.

Yih-Kuen Tsay (IM.NTU)

Theory of Computing 2013 25 / 36

A start configuration (by Part 1):

Suppose $\delta(q_0, 0) = (q_7, 2, R)$. With Parts 2-5, the match may be extended to:

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 26 / 36

(人間) とうき くうとう う

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 27 / 36

To ensure that a match starts with
$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$$
,
S converts the collection $\left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \cdots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$ to
 $\left\{ \begin{bmatrix} \star t_1 \\ \star b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_1 \\ b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_2 \\ b_2 \star \end{bmatrix}, \cdots, \begin{bmatrix} \star t_k \\ b_k \star \end{bmatrix}, \begin{bmatrix} \star \diamondsuit \\ \diamondsuit \end{bmatrix} \right\}$

where

Yih-Kuen Tsay (IM.NTU)

Theory of Computing 2013 28 / 36

3

(日) (周) (日) (日)

Computable Functions

A Turing machine computes a function by starting with the input to the function on the tape and halting with the output of the function on the tape.

Definition (5.17)

A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

- For example, all usual arithmetic operations on integers are computable functions.
- Computable functions may be transformations of machine descriptions.

Mapping (Many-One) Reducibility

Definition (5.20)

Language A is **mapping reducible** (many-one reducible) to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \longrightarrow \Sigma^*$, where for every $w, w \in A \iff f(w) \in B$.

This provides a way to convert questions about membership testing in A to membership testing in B.

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 30 / 36

Mapping (Many-One) Reducibility (cont.)

FIGURE **5.21** Function f reducing A to B

Source: [Sipser 2006]

The function f is called the reduction of A to B.

Yih-Kuen Tsay (IM.NTU)

Reducibility

Theory of Computing 2013 31 / 36

Reducibility and Decidability

Theorem (5.22)

If $A \leq_m B$ and B is decidable, then A is decidable.

- Let M be a decider for B and f a reduction from A to B. A decider N for A works as follows.
- 📀 N = "On input w:
 - 1. Compute f(w).
 - 2. Run M on input f(w) and output whatever M outputs."

Corollary (5.23)

If $A \leq_m B$ and A is undecidable, then B is undecidable.

Yih-Kuen Tsay (IM.NTU)

Reducibility and Decidability (cont.)

Theorem

 $HALT_{\rm TM}$ is undecidable.

• We show that $A_{\text{TM}} \leq_m HALT_{\text{TM}}$, i.e., a computable function f exists (as defined by F below) such that

$$\langle M, w \rangle \in A_{\mathrm{TM}} \iff f(\langle M, w \rangle) \in HALT_{\mathrm{TM}}.$$

• F = "On input $\langle M, w \rangle$:

1. Construct the following machine M'.

M' = "On input *x*:

1.1 Run M on x.

1.2 If *M* accepts, *accept*.

- 1.3 If M rejects, enter a loop.
- 2. Output $\langle M', w \rangle$."

Yih-Kuen Tsay (IM.NTU)

Reducibility and Recognizability

Theorem (5.28)

If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary (5.29)

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Corollary

If $A \leq_m B$ (i.e., $\overline{A} \leq_m \overline{B}$) and A is not co-Turing-recognizable, then B is not co-Turing-recognizable.

Note: "A is not co-Turing-recognizable" is the same as " \overline{A} is not Turing-recognizable".

Yih-Kuen Tsay (IM.NTU)

Reducibility and Recognizability (cont.)

Theorem (5.30 Part One)

 $EQ_{\rm TM}$ is not Turing-recognizable.

- We show that $A_{\rm TM}$ reduces to $\overline{EQ_{\rm TM}}$, i.e., $\overline{A_{\rm TM}}$ reduces to $EQ_{\rm TM}$.
- Since $\overline{A_{\rm TM}}$ is not Turing-recognizable, $EQ_{\rm TM}$ is not Turing-recognizable.
- F = "On input $\langle M, w \rangle$:
 - Construct the following two machines M₁ and M₂. M1 = "On any input: *reject*." M2 = "On any input: Run M on w. If it accepts, *accept*."
 On the transmission of the machine transmission of the mach
 - 2. Output $\langle M_1, M_2 \rangle$."

Yih-Kuen Tsay (IM.NTU)

Reducibility and Recognizability (cont.)

Theorem (5.30 Part Two)

 $EQ_{\rm TM}$ is not co-Turing-recognizable.

- \bigcirc We show that $A_{
 m TM}$ reduces to $EQ_{
 m TM}$.
- Since A_{TM} is not co-Turing-recognizable, EQ_{TM} is not co-Turing-recognizable.
- $G = \text{``On input } \langle M, w \rangle$:
 - Construct the following two machines M₁ and M₂. M1 = "On any input: accept." M2 = "On any input: Run M on w. If it accepts, accept."
 Output (M₁, M₂)."

Yih-Kuen Tsay (IM.NTU)