

Time Complexity and NP-Completeness

(Based on [Sipser 2006])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Time Complexity

- Decidability of a problem merely indicates that the problem is computationally solvable in principle.
- It may not be solvable in practice if the solution requires an inordinate amount of time or memory.
- We shall introduce a way of measuring the time used to solve a problem.
- We then show how to classify problems according to the amount of time required.

Measuring Time Complexity

- Let $A = \{0^k 1^k \mid k \ge 0\}$.
- How much time does a single-tape TM need to decide A?
- \bigcirc A single-tape TM M_1 for A works as follows:
 - 1. Scan across the tape and *reject* if a 0 appears to the right of a 1.
 - 2. Repeat Stage 3 if both 0s and 1s remain on the tape.
 - 3. Scan across the tape, crossing off a single 0 and a single 1.
 - 4. If no 0s or 1s remain on the tape, accept; otherwise, reject.

Measuring Time Complexity (cont.)

• We shall compute the running time of an algorithm purely as a function of the length of the string representing the input.

Definition (7.1)

Let M be a deterministic TM that halts on all inputs.

The **running time** or **time complexity** of M is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the *maximum* number of steps that M uses on any input of length n.

If f(n) is the running time of M, we say that M runs in time f(n) or that M is an f(n) time Turing machine.

Asymptotic Analysis

- The exact running time of an algorithm is a complex expression.
- We seek to understand the running time of the algorithm when it is run on large inputs.
- We do so by considering only the highest-order term of the expression of its running time (discarding the coefficient of that term and any lower-order terms).
- For example, if $f(n) = 6n^3 + 2n^2 + 20n + 45$, we say that f is asymptotically at most n^3 .
- The asymptotic notation, or big-O notation, for describing this relationship is $f(n) = O(n^3)$.

Asymptotic Bounds

• Let \mathcal{R}^+ be the set of positive real numbers.

Definition (7.2)

Let f and g be two functions $f, g : \mathcal{N} \longrightarrow \mathcal{R}^+$.

We say that f(n) = O(g(n)) if positive integers c and n_0 exist so that, for every integer $n \ge n_0$,

$$f(n) \leq cg(n)$$
.

When f(n) = O(g(n)), we say that g(n) is an (asymptotic) upper bound for f(n).

Asymptotic Bounds (cont.)

- Intuitively, f(n) = O(g(n)) means that f is less than or equal to g if we disregard differences up to a constant factor.
- Big-O notation gives a way to say that one function is asymptotically no more than another.
- **⊗** Big-O notation can appear in arithmetic expressions such as $O(n^2) + O(n)$ (= $O(n^2)$) and $2^{O(n)}$.
- \odot Bounds of the form n^c , for c > 0, are called *polynomial bounds*.
- **Solution** Solution 2^{n^c} , for c > 0, are called *exponential bounds*.

Asymptotic Bounds (cont.)

To say that one function is asymptotically *less than* another, we use small-o notation.

Definition (7.5)

Let f and g be two functions $f, g : \mathcal{N} \longrightarrow \mathcal{R}^+$.

We say that f(n) = o(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

ightharpoonup For example, $\sqrt{n} = o(n)$ and $n \log n = o(n^2)$.

Analyzing Algorithms

- Consider the single-tape TM M_1 for deciding $\{0^k1^k \mid k \geq 0\}$.
- Stage 1 takes 2n = O(n) steps: n steps to scan the input and another n steps to reposition the head at the left-hand end of the tape.
- Each execution of Stage 3 takes 2n steps and at most n/2 such executions are required. So, Stages 2 and 3 take at most (n/2)2n (= $O(n^2)$) steps.
- \bigcirc Stage 4 takes n (= O(n)) steps.

Complexity Classes

Definition (7.7)

Let $t: \mathcal{N} \longrightarrow \mathcal{N}$ be a function.

Define the **time complexity class** TIME(t(n)) to be { $L \mid L$ is a language decided by an O(t(n)) time Turing machine}.

- \lozenge $A (= \{0^k 1^k \mid k \geq 0\}) \in \mathrm{TIME}(n^2)$, since M_1 decides A in time $O(n^2)$.
- Is there a machine that decides A asymptotically faster?
- In other words, is A in TIME(t(n)) for $t(n) = o(n^2)$?

Complexity Classes (cont.)

- Below is a faster single-tape TM for deciding A $(=\{0^k1^k \mid k>0\}).$
- $M_2 =$ "On input string w:
 - 1. Same as Stage 1 of M_1 .
 - 2. Repeat Stages 3 and 4 if both 0s and 1s remain on the tape.
 - 3. If the total number of 0s and 1s remaining is odd, *reject*.
 - 4. Cross off every other 0 and then every other 1.
 - 5. If no 0s or 1s remain on the tape, accept; otherwise, reject."
- The running time of M_2 is $O(n \log n)$ and hence $A ∈ TIME(n \log n)$.

Complexity Classes (cont.)

- Below is an even faster TM, which has *two* tapes, for deciding A (= $\{0^k 1^k \mid k \ge 0\}$).
- $M_3 =$ "On input string w:
 - 1. Same as Stage 1 of M_1 .
 - 2. Copy the 0s on Tape 1 onto Tape 2.
 - Scan across the 1s on Tape 1 until the end of the input, crossing off a 0 on Tape 2 for each 1. If there are not enough 0s, reject.
 - 4. If all the 0s have now been crossed off, *accept*; otherwise, *reject*."
- \bigcirc The running time of M_3 is O(n).
- This indicates that the complexity of A depends on the model of computation selected.

Complexity Relationships among Models

Theorem (7.8)

Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time multitape Turing machine has an equivalent $O(t^2(n))$ time single-tape Turing machine.

- Let M be a k-tape TM running in t(n) time.
- A single-tape TM S simulating M requires O(t(n)) tape cells to store the current contents of M's tapes and the respective head positions.
- \bigcirc It takes O(t(n)) time for S to simulate each of M's t(n) steps.
- \bigcirc So, the running time of S is $t(n) \times O(t(n)) = O(t^2(n))$.

Complexity Relationships among Models (cont.)

Definition (7.9)

The running time of a nondeterministic TM N is the function $f: \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the *maximum* number of steps that N uses on *any* branch of its computation on any input of length n.

Theorem (7.11)

Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time nondeterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic single-tape Turing machine.

Complexity Relationships among Models (cont.)

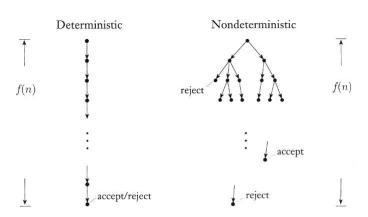


FIGURE **7.10**Measuring deterministic and nondeterministic time

Source: [Sipser 2006]

Complexity Relationships among Models (cont.)

- \odot Every branch of N's computation tree has a length of at most t(n).
- The total number of nodes in the tree is $O(b^{t(n)})$, where b is the maximum number of legal choices given by N's transition function.
- The running time of a simulating deterministic 3-tape TM is $O(t(n)) \times O(b^{t(n)}) = 2^{O(t(n))}$.
- The running time of a simulating deterministic single-tape TM is $(2^{O(t(n))})^2 = 2^{O(2t(n))} = 2^{O(t(n))}$.

Polynomial Time

- For our purposes, *polynomial differences* in running time are considered to be small, whereas *exponential differences* are considered to be large.
- Exponential time algorithms typically arise when we solve problems by searching through a space of solutions, called brute-force search.
- All "reasonable" deterministic computational models are polynomially equivalent, i.e., any one of them can simulate another with a polynomial increase in running time.
- We shall focus on aspects of time complexity theory that are unaffected by polynomial differences in running time.

The Class P

Definition (7.12)

P is the class of languages that are decidable in *polynomial* time on a *deterministic* single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^{k})$$

- P is invariant for all models of computing that are polynomially equivalent to the deterministic single-tape Turing machine.
- P roughly corresponds to the class of problems that are "realistically solvable" on a computer.

Analyzing Algorithms for P Problems

- Suppose that we have given a high-level description of a polynomial time algorithm with stages. To analyze the algorithm,
 - 1. we first give a polynomial upper bound on the number of stages that the algorithm uses, and
 - 2. we then show that the individual stages can be implemented in polynomial time on a reasonable deterministic model.
- A "reasonable" encoding method for problems should be used, which allows for polynomial time encoding and decoding of objects into natural internal representation or into other reasonable encodings.

Problems in P

⊙ $PATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from s to t}.$

Theorem (7.14)

$PATH \in P$.

- \bigcirc $M = \text{"On input } \langle G, s, t \rangle$:
 - 1. Place a mark on node s.
 - 2. Repeat Stage 3 until no additional nodes are marked.
 - 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
 - 4. If t is marked, accept; otherwise, reject."

Problems in P (cont.)

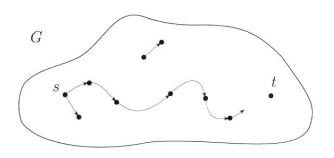


FIGURE 7.13

The PATH problem: Is there a path from s to t?

Source: [Sipser 2006]

Problems in P (cont.)

• RELPRIME = $\{\langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime} \}$.

Theorem (7.15)

$RELPRIME \in P$.

- \bigcirc The input size of a number x is $\log x$ (not x itself).
- $E = \text{"On input } \langle x, y \rangle$:
 - 1. Repeat Stages 2 and 3 until y = 0.
 - 2. Assign $x \leftarrow x \mod y$.
 - 3. Exchange x and y.
 - 4. Output *x*."
- \bigcirc R = "On input $\langle x, y \rangle$:
 - 1. Run E on $\langle x, y \rangle$.
 - 2. If E's output is 1, accept; otherwise, reject."

Problems in P (cont.)

Theorem (7.16)

Every context-free language belongs to P.

We assume that a CFG in Chomsky normal form is given for the context-free language.

```
D = "On input w = w_1 w_2 \cdots w_n,
    If w = \varepsilon and S \to \varepsilon is a rule, accept.
    For i = 1 to n.
   For each variable A.
        Is A \rightarrow b, where b = w_i, a rule?
5.
        If yes, add A to table(i, i).
    For l=2 to n.
      For i = 1 to n - l + 1,
8. Let i = i + l - 1,
9. For k = i to i - 1,
          For each rule A \rightarrow BC.
10.
11.
             If B \in table(i, k) and C \in table(k + 1, i),
             then put A in table(i, i).
12. If S \in table(1, n), accept; otherwise, reject."
```

The Hamiltonian Path Problem

- A Hamiltonian path in a directed graph is a directed path that goes through each node exactly once.
- **◈** $HAMPATH = \{\langle G, s, t \rangle \mid G \text{ is a directed graph with a Hamiltonian path from <math>s \text{ to } t\}.$
- We can easily obtain an exponential time algorithm for HAMPATH.
- No one knows whether HAMPATH is solvable in polynomial time.
- However, *verifying* the existence of a Hamiltonian path may be much easier than *determining* its existence.

The Hamiltonian Path Problem (cont.)

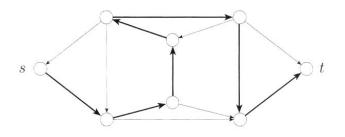


FIGURE **7.17**A Hamiltonian path goes through every node exactly once

Source: [Sipser 2006]

The Class NP

Definition (7.18)

A verifier for a language A is an algorithm V, where

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$$

The information represented by the symbol c is called a *certificate*, or *proof*, of membership in A.

A polynomial time verifier runs in polynomial time in the length of w.

Definition (7.19)

NP is the class of *polynomially verifiable* languages, i.e., languages that have polynomial time verifiers.

The Class NP (cont.)

Theorem (7.20)

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

- Let V be a verifier for $A \in \mathbb{NP}$ that runs in time n^k . Construct a decider N for A as follows.
- \bigcirc N = "On input w of length n:
 - 1. Nondeterministically select string c of length n^k .
 - 2. Run V on input $\langle w, c \rangle$.
 - 3. If V accepts, accept; otherwise, reject."

The Class NP (cont.)

- Let N be a nondeterministic decider for a language A that runs in time n^k . Construct a verifier V for A as follows.
- $\bigcirc V = \text{``On input } \langle w, c \rangle$:
 - Simulate N on input w, treating each symbol of c as a description of the nondeterministic choice to make at each step.
 - 2. If this branch of *N*'s computation accepts, *accept*; otherwise, *reject*."

The Class NP (cont.)

Definition (7.21)

 $NTIME(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine}\}.$

Corollary (7.22)

 $NP = \bigcup_k NTIME(n^k).$

Analyzing Algorithms for NP Problems

- The class NP is insensitive to the choice of reasonable nondeterministic computational model.
- Like in the deterministic case, we use a high-level description to present a nondeterministic polynomial time algorithm.
 - Each stage of a nondeterministic polynomial time algorithm must have an obvious implementation in polynomial on a reasonable nondeterministic model.
 - 2. Every branch of its computation tree uses at most polynomially many stages.

Problems in NP

- A *clique* in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.
- \bigcirc A *k-clique* is a clique that contains *k* nodes.
- \bigcirc *CLIQUE* = { $\langle G, k \rangle \mid G$ is an undirected graph with a k-clique}.

Theorem (7.24)

CLIQUE is in NP.

Problems in NP (cont.)

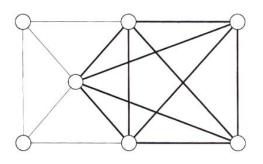


FIGURE **7.23** A graph with a 5-clique

Source: [Sipser 2006]

Problems in NP (cont.)

- V = "On input $\langle \langle G, k \rangle, c \rangle$:
 - 1. Test whether c is a set of k nodes in G.
 - 2. Test whether G contains all edges connecting nodes in c.
 - 3. If both pass, accept; otherwise, reject."
- Alternatively,

N = "On input $\langle G, k \rangle$:

- 1. Nondeterministically select a subset c of k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If yes, accept; otherwise, reject."

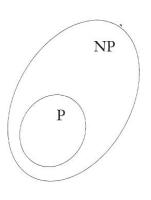
Problems in NP (cont.)

• SUBSET_SUM = $\{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\}$ and for some $\{y_1, \dots, y_l\} \subseteq S$, we have $\sum y_i = t\}$.

Theorem (7.25)

SUBSET_SUM is in NP.

- \bigcirc V = "On input $\langle\langle S, t \rangle, c \rangle$:
 - 1. Test whether c is a collection of numbers that sum to t.
 - 2. Test whether S contains the numbers in c.
 - 3. If both pass, accept; otherwise, reject."
- Alternatively, $N = \text{"On input } \langle S, t \rangle$:
 - 1. Nondeterministically select a subset c of the numbers in S.
 - 2. Test whether c is a collection of numbers that sum to t.
 - 3. If yes, accept; otherwise, reject."


The Class co-NP

- The complements of *CLIQUE* and *SUBSET_SUM*, namely *CLIQUE* and *SUBSET_SUM*, are not obviously members of NP.
- Verifying that something is not present seems to be more difficult than verifying that it is present.
- The complexity class co-NP contains the languages that are complements of languages in NP.
- We do not know whether co-NP is different from NP.

P vs. NP

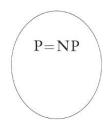


FIGURE **7.26**One of these two possibilities is correct

Source: [Sipser 2006]

NP-Completeness

- The complexity of certain problems in NP is related to that of the entire class [Cook and Levin].
- If a polynomial time algorithm exists for any of the problems, all problems in NP would be polynomial time solvable.
- These problems are called NP-complete.
- $SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula}\}.$

Theorem (7.27; Cook-Levin)

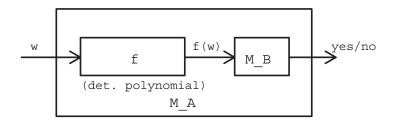
 $SAT \in P \text{ iff } P = NP.$

Polynomial Time Reducibility

• When problem A is *efficiently* reducible to problem B, an efficient solution to B can be used to solve A efficiently.

Definition (7.28)

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a **polynomial time computable function** if some polynomial time Turing machine M, on every input w, halts with just f(w) on its tape.



Definition (7.29)

Language A is **polynomial time mapping reducible** (polynomial time reducible) to language B, written $A \leq_P B$, if there is a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

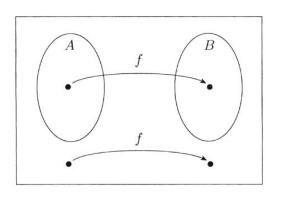


FIGURE **7.30** Polynomial time function f reducing A to B

Theorem (7.31)

If $A \leq_P B$ and $B \in P$, then $A \in P$.

- lacktriangle Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B.
- N = "On input w:
 - 1. Compute f(w).
 - 2. Run M on input f(w) and output whatever M outputs."

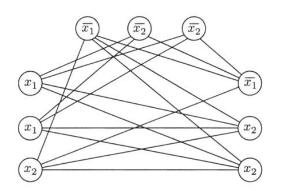
Example Polynomial Time Reducibility

♠ A Boolean formula is in conjunctive normal form, called a CNF-formula, if it comprises several clauses connected with \(\triangle s\), as in

$$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6})$$

◆ It is a 3CNF-formula if all the clauses have three literals, as in

$$(x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee x_5 \vee x_6)$$


• 3SAT = $\{\langle \phi \rangle \mid \phi \text{ is a satisfiable 3CNF-formula} \}$.

Theorem (7.32)

3SAT is polynomial time reducible to CLIQUE.

Example Polynomial Time Reducibility (cont.)

FIGURE 7.33

The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

NP-Completeness

Definition (7.34)

A language B is **NP-complete** if it satisfies two conditions:

- 1. B is in NP, and
- 2. every A in NP is polynomial time reducible to B (in which case, we say that B is NP-hard).

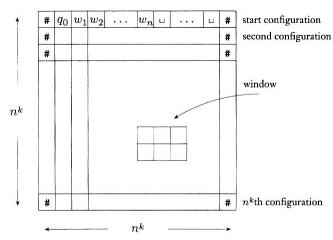
Theorem (7.35)

If B is NP-complete and $B \in P$, then P = NP.

Theorem (7.36)

If B is NP-complete and $B \leq_{\mathrm{P}} C$ for some $C \in \mathrm{NP}$, then C is NP-complete.

The Cook-Levin Theorem



Theorem (7.37)

SAT is NP-complete.

- ♦ SAT is in NP, as a nondeterministic polynomial time TM can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ .
- We next construct a polynomial time reduction for each language A in NP to SAT.
- The reduction takes a string w and produces a Boolean formula ϕ that simulates the NP machine N for A on input w.
- Assume that N runs in time n^k (with some constant difference) for some k > 0.

FIGURE **7.38** A tableau is an $n^k \times n^k$ table of configurations

Source: [Sipser 2006] Yih-Kuen Tsay (IM.NTU)

- lacktriangledown If N accepts, ϕ has a satisfying assignment that corresponds to the accepting computation.
- lacktriangle If N rejects, no assignment satisfies ϕ .
- **③** Let $C = Q \cup \Gamma \cup \{\#\}$. For $1 \le i, j \le n^k$ and $s \in C$, we have a variable $x_{i,j,s}$.
- Variable $x_{i,j,s}$ is assigned 1 iff cell[i,j] contains an s.
- lacktriangle Construct ϕ as $\phi_{
 m cell} \wedge \phi_{
 m start} \wedge \phi_{
 m accept} \wedge \phi_{
 m move}$, where . . .
 - \red Size of ϕ_{cell} : $O(n^{2k})$.
 - % Size of ϕ_{start} : $O(n^k)$.
 - \red Size of ϕ_{accept} : $O(n^{2k})$.
 - % Size of ϕ_{move} : $O(n^{2k})$.

$$\phi_{\text{cell}} = \bigwedge_{1 \leq i,j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{s,t \in C, s \neq t} (\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}}) \right) \right] .$$

$$\phi_{\text{start}} = \begin{array}{c} x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \cdots \wedge x_{1,n+2,w_n} \wedge \\ x_{1,n+3,\sqcup} \wedge \cdots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \end{array}.$$

$$\phi_{\text{accept}} = \bigvee_{1 \le i, j < n^k} x_{i,j,q_{\text{accept}}} .$$

$$\phi_{\text{move}} = \bigwedge_{1 \le i \le (n^k - 1), 2 \le i \le (n^k - 1)} (\text{window } (i, j) \text{ is legal}).$$

• Assume that $\delta(q_1, a) = \{(q_1, b, R)\}$ and $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}.$

(a)	a	q_1	Ъ	
(a)	q_2	a	С	

(b)
$$\begin{array}{c|cccc} a & q_1 & b \\ \hline a & a & q_2 \end{array}$$

(c)
$$\begin{array}{c|cccc} a & a & q_1 \\ \hline a & a & b \\ \hline \end{array}$$

(e)
$$\begin{array}{c|cccc} a & b & a \\ \hline a & b & q_2 \end{array}$$

FIGURE **7.39** Examples of legal windows

• Assume that $\delta(q_1, a) = \{(q_1, b, R)\}$ and $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}.$

(a)	a	b	a
(a)	a	a	a

(b)
$$\begin{array}{c|cccc} a & q_1 & b \\ \hline q_1 & a & a \end{array}$$

(c)
$$\begin{array}{c|cccc} b & q_1 & b \\ \hline q_2 & b & q_2 \end{array}$$

FIGURE **7.40** Examples of illegal windows

lacktriangle The condition "window (i,j) is legal" can be expressed as

$$\bigvee_{\substack{a_1, \cdots, a_6 \text{ legal}}} \frac{\left(x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6}\right)}{x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6}}$$

Another NP-Complete Problem

Theorem

3SAT is NP-complete.

- The proof of the Cook-Levin theorem can be modified so that the Boolean formula involved is in conjunctive normal form.
- A CNF-formula can be converted in polynomial time to a 3CNF-formula (with a length polynomially bounded in the length of the CNF-formula).
- If a clause contains I literals $(a_1 \lor a_2 \lor \cdots \lor a_I)$, we can replace it with the I-2 clauses

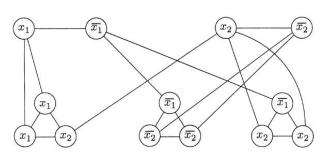
$$(a_1 \lor a_2 \lor z_1) \land (\overline{z_1} \lor a_3 \lor z_2) \land (\overline{z_2} \lor a_4 \lor z_3) \land \\ \cdots \land (\overline{z_{l-4}} \lor a_{l-2} \lor z_{l-3}) \land (\overline{z_{l-3}} \lor a_{l-1} \lor a_l)$$

NP-Complete Problems

Theorem

CLIQUE is NP-complete.

CLIQUE is in NP and $3SAT \leq_{P} CLIQUE$.


- A *vertex cover* of an undirected graph *G* is a subset of the nodes where every edge of *G* touches one of those nodes.
- ◈ $VERTEX_COVER = \{\langle G, k \rangle \mid G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}.$

Theorem

VERTEX_COVER is NP-complete.

• We show that $3SAT \leq_{P} VERTEX_COVER$.

FIGURE **7.45**

The graph that the reduction produces from $\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$

Source: [Sipser 2006]

Note: Let k be m + 2l, where m is the number of variables and l the number of clauses in ϕ .

Theorem

HAMPATH is NP-complete.

We show that $3SAT \leq_P HAMPATH$.

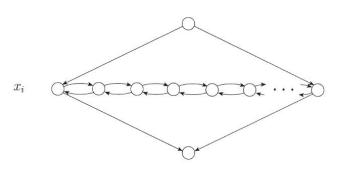
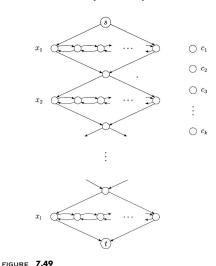


FIGURE **7.47** Representing the variable x_i as a diamond structure



 c_j

FIGURE 7.48

Representing the clause c_j as a node

The high-level structure of G

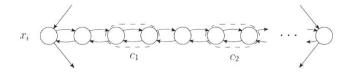
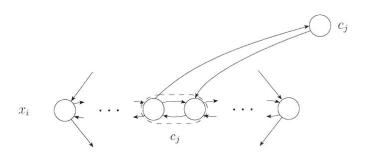



FIGURE **7.50**The horizontal nodes in a diamond structure

FIGURE **7.51** The additional edges when clause c_i contains x_i

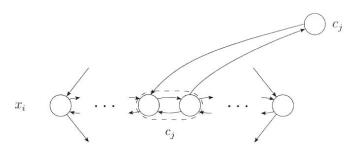
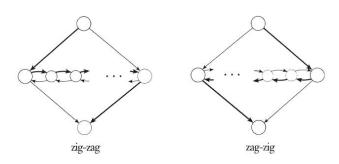



FIGURE **7.52** The additional edges when clause c_j contains $\overline{x_i}$

FIGURE **7.53**

Zig-zagging and zag-zigging through a diamond, as determined by the satisfying assignment

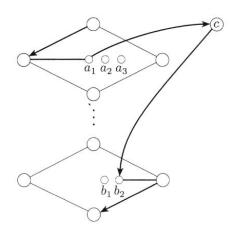


FIGURE **7.54**This situation cannot occur

Let *UHAMPATH* be the undirected version of the Hamiltonian path problem *HAMPATH*.

Theorem

UHAMPATH is NP-complete.

- An input $\langle G, s, t \rangle$ for *HAMPATH* is mapped to $\langle G', s', t' \rangle$ for *UHAMPATH* as follows.
- **Solution** Each node u of G, except for s and t, is replaced by a triple of nodes u^{in} , u^{mid} , and u^{out} in G'.
- $ightharpoonup
 ightharpoonup
 m{Nodes} \, s \,
 m{and} \, t \,
 m{are} \, replaced by node \, s^{
 m{out}} = s' \,
 m{and} \, \, t^{
 m{in}} = t'.$
- **©** Edges connect u^{mid} with u^{in} and u^{out} .
- lacktriangle An edge connects $u^{ ext{out}}$ and $v^{ ext{in}}$ if (u,v) is an edge of G.

♦ $SUBSET_SUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\} \text{ and for some } \{y_1, \dots, y_i\} \subseteq S, \text{ we have } \sum y_i = t\}.$

Theorem

SUBSET_SUM is NP-complete.

• We show that $3SAT \leq_P SUBSET_SUM$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y_1	1	0	0	0		0	1	0		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	z_1	1	0	0	0		0	0	0		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	y_2		1	0	0		0	0	1		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	0	0		0	1	0		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	0		0		1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~3			-			Ü				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						٠.				•	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							•				•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111						1	0	0		n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											90,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\vdash		-	-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1		67.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$egin{array}{cccccccccccccccccccccccccccccccccccc$	h_2								1		0
$egin{array}{cccccccccccccccccccccccccccccccccccc$											
$egin{array}{cccccccccccccccccccccccccccccccccccc$:										:
h_k 1											
t 1 1 1 1 ··· 1 3 3 ··· 3	h_k										1
	=	1	1	1	1		1	3	3		3

FIGURE **7.57**Reducing 3SAT to SUBSET-SUM