
Regular Languages
(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 1 / 75

Finite Automata

What is a computer?

Real computers are complicated.

To set up a manageable mathematical theory of computers, we
use an idealized computer called a computational model.

The finite automaton (finite-state machine) is the simplest of
such models.

It represents a computer with an extremely limited amount of
memory.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 2 / 75

Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 3 / 75

Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 4 / 75

Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 5 / 75

Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 6 / 75

Formal Definition

Though state diagrams are easier to grasp intuitively, we need
the formal definition, too.

A formal definition is precise so as to resolve any uncertainties
about what is allowed in a finite automaton.

It also provides notation for concise and clear expression.

Definition (1.5)

A finite automaton is a 5-tuple (Q,Σ, δ, q0,F), where

1. Q is a finite set of states,

2. Σ is a finite set of symbols (the alphabet),

3. δ : Q × Σ −→ Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 7 / 75

Formal Definition (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 8 / 75

Definition of M1

Formally, M1 = (Q,Σ, δ, q1,F), where

1. Q = {q1, q2, q3},
2. Σ = {0, 1},

3. δ is given as

0 1
q1 q1 q2

q2 q3 q2

q3 q2 q2

,

4. q1 is the start state, and

5. F = {q2}.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 9 / 75

Language Recognizers

Let A be the set of all strings that a machine M accepts.

We say that A is the language of machine M and write
L(M) = A.

We also say that M recognizes A (or that M accepts A).

A machine is said to accept the empty language ∅ if it accepts
no strings.

Regarding the example automaton M1,
L(M1) = {w | w contains at least one 1 and an even number of
0s follow the last 1}.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 10 / 75

Language Recognizers

Let A be the set of all strings that a machine M accepts.

We say that A is the language of machine M and write
L(M) = A.

We also say that M recognizes A (or that M accepts A).

A machine is said to accept the empty language ∅ if it accepts
no strings.

Regarding the example automaton M1,
L(M1) = {w | w contains at least one 1 and an even number of
0s follow the last 1}.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 10 / 75

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: L(M2) = {w | w ends in a 1}

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 11 / 75

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: L(M2) = {w | w ends in a 1}

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 11 / 75

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: L(M3) = {w | w is the empty string or ends in a 0}

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 12 / 75

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: L(M3) = {w | w is the empty string or ends in a 0}

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 12 / 75

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: M4 accepts strings that start and end with the same symbol.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 13 / 75

Language Recognizers (cont.)

Source: [Sipser 2006]

Note: M4 accepts strings that start and end with the same symbol.
Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 13 / 75

Language Recognizers (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 14 / 75

Formal Definition of Computation

We already have an informal idea of how a machine computes, i.e.,
how a machine accepts or rejects a string. Below is a formalization.

Let M = (Q,Σ, δ, q0,F) be a finite automaton and
w = w1w2 . . .wn be a string over Σ.

We say that M accepts w if a sequence of states r0, r1, . . . , rn
exists such that

1. r0 = q0,
2. δ(ri ,wi+1) = ri+1 for i = 0, 1, . . . , n − 1, and
3. rn ∈ F .

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 15 / 75

Regular Languages

Definition (1.16)

A language is called a regular language if some finite automaton
recognizes it.

There are a few alternatives for defining regular languages.

We will see some of them and show that they are all equivalent.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 16 / 75

Designing Finite Automata

The “reader as automaton” method:

1. Determine the necessary information needed to be remembered
about the string as it is being read.

2. Represent the information as a finite list of possibilities and
assign a state to each of the possibilities.

3. Assign the transitions by seeing how to go from one possibility
to another upon reading a symbol.

4. Set the start state to be the state corresponding to the
possibility associated with having seen 0 symbols so far.

5. Set the accept states to be those corresponding to possibilities
where you want to accept the input read so far.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 17 / 75

Designing Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 18 / 75

Designing Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 19 / 75

Designing Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 20 / 75

Designing Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 21 / 75

The Regular Operations

In arithmetic, the basic objects are numbers and the tools for
manipulating them are operations such as + and ×.

In the theory of computation the objects are languages and the
tools include operations specifically designed for manipulating
them. We consider three operations called regular operations.

Definition (1.23)

Let A and B be languages. The three regular operations are defined
as follows:

Union: A ∪ B = {x | x ∈ A or x ∈ B}.
Concatenation: A ◦ B = {xy | x ∈ A and y ∈ B}.
Star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

We will use these operations to study the properties of finite
automata.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 22 / 75

Closedness

A collection of objects is closed under some operation if applying
the operation to members of the collection returns an object still
in the collection.

We will show that the collection of regular languages is closed
under all three regular operations.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 23 / 75

Closedness under Union

Theorem (1.25)

The class of regular languages is closed under the union operation. In
other words, if A1 and A2 are regular languages, so is A1 ∪ A2.

The proof is by construction. To prove that A1 ∪ A2 is regular,
we construct a finite automaton M that recognizes A1 ∪ A2.

Suppose that a finite automaton M1 recognizes A1 and another
M2 recognizes A2.

Machine M works by simulating both M1 and M2 and accepting
if either simulation accepts.

As the input symbols arrive one by one, M remembers the state
that each machine would be in if it had read up to this point.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 24 / 75

Closedness under Union (cont.)

Theorem (1.25)

The class of regular languages is closed under the union operation. In
other words, if A1 and A2 are regular languages, so is A1 ∪ A2.

Suppose M1 = (Q1,Σ, δ1, q1,F1) recognizes A1 and
M2 = (Q2,Σ, δ2, q2,F2) recognizes A2.

Construct M = (Q,Σ, δ, q0,F) to recognize A1 ∪ A2:

1. Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}.
2. Σ is the same. (Generalization is possible.)
3. For each (r1, r2) ∈ Q and each a ∈ Σ, let

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)).
4. q0 = (q1, q2).
5. F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 25 / 75

Closedness under Concatenation

Theorem (1.26)

The class of regular languages is closed under the concatenation
operation. In other words, if A1 and A2 are regular languages, so is
A1 ◦ A2.

Proof by construction along the lines of the proof for closedness
under union does not work in this case.

We resort to a new technique called nondeterminism.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 26 / 75

Nondeterminism

In a nondeterministic machine, several choices may exist for the
next state after reading the next input symbol in a given state.

The difference between a deterministic finite automaton (DFA)
and a nondeterministic finite automaton (NFA):

of next states input symbols
(per symbol)

DFA 1 from Σ
NFA 0, 1, or more from Σ ∪ {ε}

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 27 / 75

Nondeterminism (cont.)

Nondeterminism is a useful concept that has had great impact
on computation theory.

As we will show, every NFA can be converted into an equivalent
DFA.

However, constructing NFAs is sometimes easier than directly
constructing DFAs. An NFA may be much smaller than its
deterministic counterpart, or its functioning may be easier to
understand.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 28 / 75

Nondeterminism (cont.)

Source: [Sipser 2006]

Note: N1 accepts all strings that contain either 101 or 11 as a
substring.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 29 / 75

Nondeterminism (cont.)

Source: [Sipser 2006]

Note: N1 accepts all strings that contain either 101 or 11 as a
substring.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 29 / 75

How Does an NFA Compute?

1. If there are multiple choices for the next state, given the next
input symbol, the machine splits into multiple copies, all moving
to their respective next states in parallel.

2. Additional copies are also created if there are exiting arrows
labeled with ε, one copy for each of such arrows. All copies
move to their respective next states in parallel, but without
consuming any input.

3. If any copy is in an accept state at the end of the input, the
machine accepts the input string.

4. If there are input symbols remaining, the preceding steps are
repeated.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 30 / 75

Deterministic vs. Nondeterministic Comp.

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 31 / 75

A Computation of N1

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 32 / 75

Example NFA

Source: [Sipser 2006]

Note: A is the set of all strings over {0, 1} containing a 1 in the last
third position.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 33 / 75

Example NFA

Source: [Sipser 2006]

Note: A is the set of all strings over {0, 1} containing a 1 in the last
third position.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 33 / 75

Example NFA (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 34 / 75

Example NFA (cont.)

Source: [Sipser 2006]

Note: N3 accepts all strings of the form 0k where k is a multiple of 2
or 3.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 35 / 75

Example NFA (cont.)

Source: [Sipser 2006]

Note: N3 accepts all strings of the form 0k where k is a multiple of 2
or 3.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 35 / 75

Example NFA (cont.)

Source: [Sipser 2006]

Does N4 accept ε? How about babaa?

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 36 / 75

Example NFA (cont.)

Source: [Sipser 2006]

Does N4 accept ε?

How about babaa?

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 36 / 75

Example NFA (cont.)

Source: [Sipser 2006]

Does N4 accept ε? How about babaa?

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 36 / 75

Definition of an NFA

The transition function of an NFA takes a state and an input
symbol or the empty string and produces a set of possible next
states.

Let P(Q) be the power set of Q and let Σε denote Σ ∪ {ε}.

Definition (1.37)

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0,F),
where

1. Q is a finite set of states,

2. Σ is a finite alphabet,

3. δ : Q × Σε −→ P(Q) is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 37 / 75

Definition of an NFA (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 38 / 75

Definition of N1

Formally, N1 = (Q,Σ, δ, q1,F), where

1. Q = {q1, q2, q3, q4},
2. Σ = {0, 1},

3. δ is given as

0 1 ε
q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅

,

4. q1 is the start state, and

5. F = {q4}.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 39 / 75

Formal Def. of Nondeterministic Comp.

Let N = (Q,Σ, δ, q0,F) be an NFA and w be a string over Σ.

We say that N accepts w if we can write w = y1y2 . . . ym, where
yi ∈ Σε, and a sequence of states r0, r1, . . . , rm exists such that

1. r0 = q0,
2. ri+1 ∈ δ(ri , yi+1), for i = 0, 1, . . . ,m − 1, and
3. rm ∈ F .

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 40 / 75

Equivalence of NFA and DFA

Two machines are equivalent if they recognize the same language.

Theorem (1.39)

Every nondeterministic finite automaton has an equivalent
deterministic finite automaton.

Corollary (1.40)

A language is regular if and only if some nondeterministic finite
automaton recognizes it.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 41 / 75

Equivalence of NFA and DFA (cont.)

Theorem (1.39)

Every NFA has an equivalent DFA.

The idea is to convert a given NFA into an equivalent DFA that
simulates the NFA.

An NFA can be in one of several possible states, as it reads the
input.

If k is the number of states of the NFA, it has 2k subsets of
states. Each subset corresponds to one of the possibilities that
the simulating DFA must remember.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 42 / 75

Equivalence of NFA and DFA (cont.)

Theorem (1.39)

Every NFA has an equivalent DFA.

Let N = (Q,Σ, δ, q0,F) be an NFA recognizing some language
A.

Construct M = (Q ′,Σ, δ′, q′0,F
′) to recognize A as follows:

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 43 / 75

Equivalence of NFA and DFA (cont.)

1. Q ′ = P(Q).

2. For R ∈ Q ′ and a ∈ Σ, let δ′(R , a) =
⋃
r∈R

δ(r , a).

3. q′0 = {q0}.
4. F ′ = {R ∈ Q ′ | R contains some element of F}.

To allow ε arrows, define for R ⊆ Q,

E (R) = {q | q can be reached from R by ε arrows}.

Replace δ(r , a) with E (δ(r , a)) and set q′0 to be E ({q0}) in the
construction of N .

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 44 / 75

Equivalence of NFA and DFA (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 45 / 75

Equivalence of NFA and DFA (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 46 / 75

Equivalence of NFA and DFA (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 47 / 75

Closedness under Union

Theorem (1.45)

The class of regular languages is closed under the union operation.

Let N1 = (Q1,Σ, δ1, q1,F1) recognizing A1 and
N2 = (Q2,Σ, δ2, q2,F2) recognizing A2.

Construct N = (Q,Σ, δ, q0,F) to recognize A1 ∪ A2 as follows:

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 48 / 75

Closedness under Union (cont.)

1. Q = {q0} ∪ Q1 ∪ Q2.

2. q0 (6∈ Q1 ∪ Q2) is the start state.

3. For q ∈ Q and a ∈ Σε,

δ(q, a) =


δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε
∅ q = q0 and a 6= ε

4. F = F1 ∪ F2.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 49 / 75

Closedness under Union (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 50 / 75

Closedness under Concatenation

Theorem (1.47)

The class of regular languages is closed under the concatenation
operation.

Let N1 = (Q1,Σ, δ1, q1,F1) recognizing A1 and
N2 = (Q2,Σ, δ2, q2,F2) recognizing A2.

Construct N = (Q,Σ, δ, q1,F2) to recognize A1 ◦ A2 as follows:

1. Q = Q1 ∪ Q2.
2. For q ∈ Q and a ∈ Σε,

δ(q, a) =


δ1(q, a) q ∈ Q1 but q 6∈ F1
δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q2} q ∈ F1 and a = ε
δ2(q, a) q ∈ Q2 .

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 51 / 75

Closedness under Concatenation (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 52 / 75

Closedness under Star

Theorem (1.49)

The class of regular languages is closed under the star operation.

Let N1 = (Q1,Σ, δ1, q1,F1) recognizing A.

Construct N = (Q,Σ, δ, q0,F) to recognize A∗ as follows:

1. Q = {q0} ∪ Q1.
2. For q ∈ Q and a ∈ Σε,

δ(q, a) =


δ1(q, a) q ∈ Q1 but q 6∈ F1
δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q1} q ∈ F1 and a = ε
{q1} q = q0 and a = ε
∅ q = q0 and a 6= ε

3. F = {q0} ∪ F1.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 53 / 75

Closedness under Star (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 54 / 75

Regular Expressions

We can use the regular operations (union, concatenation, star)
to build up expressions, called regular expressions, to describe
languages.

The value of a regular expression is a language.

For example, the value of (0 ∪ 1)0∗ is the language consisting of
all strings starting with a 0 or 1 followed by any number of 0s.
(The symbols 0 and 1 are shorthands for the sets {0} and {1}.)
Regular expressions have an important role in computer science
applications involving text.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 55 / 75

Formal Definition of a Regular Expression

Definition (1.52)

We say that R is a regular expression if R is

1. a for some a ∈ Σ,

2. ε,

3. ∅,
4. (R1 ∪ R2), where R1 and R2 are regular expressions,

5. (R1 ◦ R2), where R1 and R2 are regular expressions, or

6. (R∗1), where R1 is a regular expression.

A definition of this type is called an inductive definition.

We write L(R) to denote the language of R .

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 56 / 75

Example Regular Expressions

Let Σ be {0, 1}.
0∗10∗ = {w | w has exactly a single 1}.
Σ∗1Σ∗ = {w | w has at least one 1}.
Σ∗001Σ∗ = {w | w contains 001 as a substring}.
(ΣΣ)∗ = {w | w is a string of even length}.
0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 =
{w | w starts and ends with the same symbol}.
(0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}.
∅∗ = {ε}.

R ∪ ∅ = R , R ◦ ε = R , R ◦ ∅ = ∅, but R ∪ ε may not equal R .

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 57 / 75

Regular Expressions vs. Finite Automata

Theorem (1.54)

A language is regular if and only if some regular expression describes
it.

This theorem has two directions:

If a language is described by a regular expression, then it is
regular.

If a language is regular, then it is described by a regular
expression.

We prove them separately.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 58 / 75

Regular Expressions vs. Finite Automata (cont.)

Lemma (1.55)

If a language is described by a regular expression, then it is regular.

1. R = a for some a ∈ Σ.
N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2},
δ(r , b) = ∅ for r 6= q1 or b 6= a.

2. R = ε.
N = ({q},Σ, δ, q, {q}), where δ(r , b) = ∅ for any r and b.

3. R = ∅.
N = ({q},Σ, δ, q, ∅), where δ(r , b) = ∅ for any r and b.

4. R = R1 ∪ R2. Closed under union.

5. R = R1 ◦ R2. Closed under concatenation.

6. R = R∗1 . Closed under star.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 59 / 75

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 60 / 75

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 61 / 75

Regular Expressions vs. Finite Automata (cont.)

Lemma (1.60)

If a language is regular, then it is described by a regular expression.

Every regular language is recognized by some DFA.

We describe a procedure for converting DFAs into equivalent
regular expressions.

For this purpose, we introduce a new type of finite automaton
called a generalized nondeterministic finite automaton (GNFA).

We show how to convert DFAs into GNFAs and then GNFAs
into regular expressions.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 62 / 75

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 63 / 75

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 64 / 75

Regular Expressions vs. Finite Automata (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 65 / 75

Definition of a GNFA

Definition (1.52)

A generalized nondeterministic finite automaton is a 5-tuple
(Q,Σ, δ, qstart, qaccept), where

1. Q is the finite set of states,

2. Σ is the input alphabet,

3. δ : (Q − {qaccept})× (Q − {qstart}) −→ R is the transition
function (where R is the collection of all regular expressions over
Σ),

4. qstart is the start state, and

5. qaccept is the accept state.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 66 / 75

Computation of a GNFA (cont.)

A GNFA accepts a string w in Σ∗ if w = w1w2 . . .
wk , where each wi is in Σ∗, and a sequence of states q0, q1, . . . , qk

exists such that

1. q0 = qstart,

2. qk = qaccept, and

3. for each i , we have wi ∈ L(Ri), where Ri = δ(qi−1, qi).

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 67 / 75

Converting a GNFA

1. Let k be the number of states of the input G .

2. If k = 2, return the label R of the only transition.

3. If k > 2, select qrip ∈ Q different from qstart and qaccept.
Let G ′ be (Q ′,Σ, δ′, qstart, qaccept), where

Q ′ = Q − {qrip}

and for any qi ∈ Q ′ − {qaccept} and any qj ∈ Q ′ − {qstart},

δ′(qi , qj) = (R1)(R2)∗(R3) ∪ (R4),

where R1 = δ(qi , qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and
R4 = δ(qi , qj).

4. Repeat with G ′.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 68 / 75

Converting a GNFA (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 69 / 75

Converting a GNFA (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 70 / 75

Nonregular Languages

To understand the power of finite automata we must also
understand their limitations.

Consider the language B = {0n1n | n ≥ 0}.
To recognize B , a machine will have to remember how many 0s
have been read so far. This cannot be done with any finite
number of states, since the number of 0s is not limited.

C = {w | w has an equal number of 0s and 1s} is not regular,
either.

But, D = {w | w has equal occurrences of 01
and 10 as substrings} is regular.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 71 / 75

The Pumping Lemma

Theorem (1.70)

If A is a regular language, then there is a number p (the pumping
length) such that, if s is any string in A and |s| ≥ p, then s may be
divided as s = xyz satisfying:

1. for each i ≥ 0, xy iz ∈ A,

2. |y | > 0, and

3. |xy | ≤ p.

Let M = (Q,Σ, δ, q1,F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of
M .

We show that any string s in A of length at least p may be
broken into xyz satisfying the three conditions.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 72 / 75

The Pumping Lemma (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 73 / 75

The Pumping Lemma (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 74 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.

Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.

Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.

Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.

Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.

Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

Example Nonregular Languages

B = {0n1n | n ≥ 0}.
Let s be 0p1p (when applying the pumping lemma).

C = {w | w has an equal number of 0s and 1s}.
Let s be 0p1p.

F = {ww | w ∈ {0, 1}∗}.
Let s be 0p10p1.

D = {1n2 | n ≥ 0}.
Let s be 1p2 .

E = {0i1j | i > j}.
Let s be 0p+11p.

Yih-Kuen Tsay (IM.NTU) Regular Languages Theory of Computing 2014 75 / 75

	Finite Automata
	The Regular Operations
	Nondeterminism
	Regular Expressions
	Nonregular Languages: The Pumping Lemma

