Theory of Computing 2015: Reducibility

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 Introduction

Introduction

- A *reduction* is a way of converting one problem into another problem in such a way that a solution to the second problem can be used to solve the first problem.
- If a problem A reduces (is reducible) to another problem B, we can use a solution to B to solve A.
- *Reducibility* says nothing about solving A or B alone, but only about the solvability of A in the presence of a solution to B.
- Reducibility is the primary method for proving that problems are computationally unsolvable.
- Suppose that A is reducible to B. If B is decidable, then A is decidable; equivalently, if A is undecidable, then B is undecidable.

2 Undecidable Problems

The Halting Problem

• $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on } w \}.$

Theorem 1 (5.1). *HALT*_{TM} is undecidable.

- The idea is to reduce the acceptance problem $A_{\rm TM}$ (shown to be undecidable) to $HALT_{\rm TM}$.
- Assume toward a contradiction that a TM R decides $HALT_{TM}$.
- We could then construct a decider S for $A_{\rm TM}$ as follows.

The Halting Problem (cont.)

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- 4. If *M* has accepted, *accept*; it *M* has rejected, reject."

Undecidable Problems

• $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem 2 (5.2). E_{TM} is undecidable.

• Assuming that a TM R decides E_{TM} , we construct a decider S for A_{TM} as follows.

Undecidable Problems (cont.)

S = "On input $\langle M, w \rangle$:

1. Construct the following TM M_1 .

 $M_1 =$ "On input x:

- (a) If $x \neq w$, reject.
- (b) If x = w, run M on input w and *accept* if M accepts w."
- 2. Run R on input $\langle M_1 \rangle$.
- 3. If R accepts, reject; if R rejects, *accept*."

Undecidable Problems (cont.)

• $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}.$

Theorem 3 (5.3). REGULAR_{TM} is undecidable.

• Assuming that a TM R decides $REGULAR_{TM}$, we construct a decider S for A_{TM} as follows.

Undecidable Problems (cont.)

S = "On input $\langle M, w \rangle$:

1. Construct the following TM M_2 .

 $M_2 =$ "On input x:

- (a) If x has the form $0^n 1^n$, *accept*.
- (b) If x does not have this form, run M on input w and *accept* if M accepts w."
- 2. Run R on input $\langle M_2 \rangle$.
- 3. If *R* accepts, *accept*; if *R* rejects, reject."

Undecidable Problems (cont.)

• $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}.$

Theorem 4 (5.4). EQ_{TM} is undecidable.

- Assume that a TM R decides EQ_{TM} .
- We construct a decider S for $E_{\rm TM}$ as follows.
- S = "On input $\langle M \rangle$:
 - 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
 - 2. If *R* accepts, *accept*; if *R* rejects, reject."

Rice's Theorem

Theorem 5. Any "nontrivial" property about the languages recognized by Turing machines is undecidable.

- Note 1: The theorem considers only properties that do not distinguish equivalent Turing machine descriptions.
- Note 2: A property is *nontrivial* if it is satisfied by some, but not all, Turing machine descriptions.

3 Reduction via Computation Histories

Computation Histories

Definition 6 (5.5). An accepting computation history for M on w is a sequence of configurations C_1, C_2, \dots, C_l , where

- 1. C_1 is the start configuration,
- 2. C_l is an accepting configuration, and
- 3. C_i yields $C_{i+1}, 1 \le i \le l-1$.

A rejecting computation history for M on w is defined similarly, except that C_l is a rejecting configuration.

- Computation histories are finite sequences.
- Deterministic machines have at most one computation history on any given input.

Linear Bounded Automata

Definition 7 (5.6). A *linear bounded automaton* (LBA) is a restricted type of Turing machine wherein the tape head is not permitted to move off the portion of the tape containing the input.

• So, an LBA is a TM with a limited amount of memory. It can only solve problems requiring memory that can fit within the tape used for the input.

(Note: Using a tape alphabet larger than the input alphabet allows the available memory to be increased up to a constant factor.)

Linear Bounded Automata (cont.)

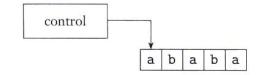


FIGURE 5.7

Schematic of a linear bounded automaton

Source: [Sipser 2006]

Linear Bounded Automata (cont.)

Despite their memory constraint, LBAs are quite powerful.

Lemma 8 (5.8). Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng^n distinct configurations of M for a tape of length n.

Decidable Problems about LBAs

• $A_{\text{LBA}} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts } w \}.$

Theorem 9 (5.9). A_{LBA} is decidable.

- L = "On input $\langle M, w \rangle$, an encoding of an LBA M and a string w:
 - 1. Simulate M on input w for qng^n steps or until it halts.
 - 2. If M has halted, accept if it has accepted and reject if it has rejected. If M has not halted, reject."

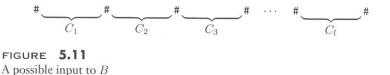
Undecidable Problems about LBAs

• $E_{\text{LBA}} = \{ \langle M \rangle \mid M \text{ is an LBA where } L(M) = \emptyset \}.$

Theorem 10 (5.10). E_{LBA} is undecidable.

- Assuming that a TM R decides E_{LBA} , we construct a decider S for A_{TM} as follows.
- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - 1. Construct an LBA B from $\langle M, w \rangle$ that, on input x, decides whether x is an accepting computation history for M on w.
 - 2. Run R on input $\langle B \rangle$.
 - 3. If *R* rejects, *accept*; if *R* accepts, reject."

Undecidable Problems about LBAs (cont.)



Source: [Sipser 2006]

Three conditions of an accepting computation history:

- C_1 is the start configuration.
- C_l is an accepting configuration.
- C_i yields C_{i+1} , for every $i, 1 \le i < l$.

Undecidable Problems about LBAs (cont.)

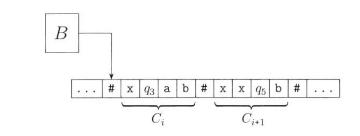


FIGURE 5.12 LBA *B* checking a TM computation history

Source: [Sipser 2006]

Undecidable Problems about CFGs

• $ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}.$

Theorem 11 (5.13). ALL_{CFG} is undecidable.

- For a TM M and an input w, we construct a CFG G (by first constructing a PDA) to generate all strings that are *not* accepting computation histories for M on w.
- That is, G generates all strings if and only if M does not accept w.
- If ALL_{CFG} were decidable, then A_{TM} would be decidable.

Undecidable Problems about CFGs (cont.)

The PDA for recognizing computation histories that are not accepting works as follows.

• The input is regarded as a computation history of the form:

$$#C_1 # C_2^R # C_3 # C_4^R # \cdots # C_l #$$

where C_i^R denotes the reverse of C_i .

- The PDA nondeterministically chooses to check if one of the following conditions holds for the input:
 - $-C_1$ is not the start configuration.
 - $-C_l$ is not an accepting configuration.
 - $-C_i$ does not yield C_{i+1} , for some $i, 1 \le i < l$.
- It also accepts an input that is not in the proper form of a computation history.

Undecidable Problems about CFGs (cont.)

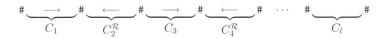


FIGURE 5.14 Every other configuration written in reverse order

Source: [Sipser 2006]

4 The Post Correspondence Problem

The Post Correspondence Problem

• Consider a collection of dominos such as follows:

ſ	$\begin{bmatrix} b \end{bmatrix}$	[a				$\begin{bmatrix} abc \end{bmatrix}$	l
J	ca	,	ab	,	a	,	$\begin{bmatrix} c \end{bmatrix}$] }

• A *match* is a list of these dominos (repetitions permitted) where the string of symbols on the top is the same as that on the bottom. Below is a match:

$$\begin{bmatrix} \underline{a} \\ \underline{ab} \end{bmatrix} \begin{bmatrix} \underline{b} \\ \underline{ca} \end{bmatrix} \begin{bmatrix} \underline{ca} \\ \underline{a} \end{bmatrix} \begin{bmatrix} \underline{a} \\ \underline{ab} \end{bmatrix} \begin{bmatrix} \underline{abc} \\ \underline{c} \end{bmatrix}$$

The Post Correspondence Problem (cont.)

- The Post correspondence problem (PCP) is to determine whether a collection of dominos has a match.
- More formally, an instance of the PCP is a collection of dominos:

$$P = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \cdots, \left[\frac{t_k}{b_k} \right] \right\}$$

- A match is a sequence i_1, i_2, \cdots, i_l such that $t_{i_1}t_{i_2}\cdots t_{i_l} = b_{i_1}b_{i_2}\cdots b_{i_l}$.
- $PCP = \{\langle P \rangle \mid P \text{ is an instance of the Post correspondence problem with a match}\}.$

Undecidability of the PCP

Theorem 12 (5.15). PCP is undecidable

- The proof is by reduction from $A_{\rm TM}$ via accepting computation histories.
- From any TM M and input w we can construct an instance P where a match is an accepting computation history for M on w.
- Assume that a TM R decides PCP.
- A decider S for A_{TM} constructs an instance of the PCP that has a match if and only if M accepts w, as follows.

Undecidability of the PCP (cont.)

1. Add
$$\left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$$
 as $\left[\frac{t_1}{b_1}\right]$.

2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{\text{reject}}$,

if
$$\delta(q, a) = (r, b, R)$$
, add $\left[\frac{qa}{br}\right]$.

3. For every $a,b,c\in \Gamma$ and every $q,r\in Q$ where $q\neq q_{\rm reject},$

if
$$\delta(q, a) = (r, b, L)$$
, add $\left[\begin{array}{c} cqa \\ \hline rcb \end{array} \right]$.

4. For every $a \in \Gamma$, add $\begin{bmatrix} a \\ \hline a \end{bmatrix}$.

5. Add
$$\begin{bmatrix} \# \\ \# \end{bmatrix}$$
 and $\begin{bmatrix} \# \\ \square \# \end{bmatrix}$.

Undecidability of the PCP (cont.)

A start configuration (by Part 1):

$$\begin{bmatrix}
\# \\
\# \\
q_0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}$$

Suppose $\delta(q_0, 0) = (q_7, 2, R)$. With Parts 2-5, the match may be extended to:

Undecidability of the PCP (cont.)

7. Add
$$\left[\begin{array}{c} q_{\text{accept}} \# \# \\ \hline \# \end{array} \right]$$
.

$$\begin{array}{c}
\# \ q_{a} \ \# \ \# \\
\# \ q_{a} \ \# \ \# \\
\end{array}$$

Undecidability of the PCP (cont.)

To ensure that a match starts with
$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$$
,
 S converts the collection $\left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \cdots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$ to
 $\left\{ \begin{bmatrix} \star t_1 \\ \star b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_1 \\ b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_2 \\ b_2 \star \end{bmatrix}, \cdots, \begin{bmatrix} \star t_k \\ b_k \star \end{bmatrix}, \begin{bmatrix} \star \diamond \\ \diamond \end{bmatrix} \right\}$
where
 $\star u = \star u_1 \star u_2 \star u_3 \star \cdots \star u_n$
 $u\star = u_1 \star u_2 \star u_3 \star \cdots \star u_n \star u_{\star} \star u_{\star} = \star u_1 \star u_2 \star u_3 \star \cdots \star u_n \star u_{\star}$

5 Mapping Reducibility

Computable Functions

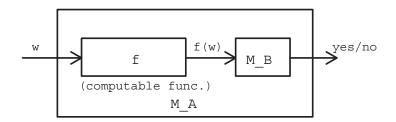
• A Turing machine computes a function by starting with the input to the function on the tape and halting with the output of the function on the tape.

Definition 13 (5.17). A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just f(w) on its tape.

- For example, all usual arithmetic operations on integers are computable functions.
- Computable functions may be transformations of machine descriptions.

Mapping (Many-One) Reducibility

Definition 14 (5.20). Language A is **mapping reducible** (many-one reducible) to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every $w, w \in A \iff f(w) \in B$.



• This provides a way to convert questions about membership testing in A to membership testing in B.

Mapping (Many-One) Reducibility (cont.)

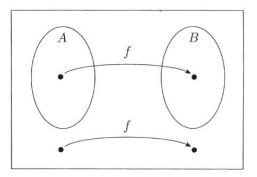


FIGURE 5.21 Function *f* reducing *A* to *B*

Source: [Sipser 2006]

• The function f is called the *reduction* of A to B.

Reducibility and Decidability

Theorem 15 (5.22). If $A \leq_m B$ and B is decidable, then A is decidable.

- Let M be a decider for B and f a reduction from A to B. A decider N for A works as follows.
- N = "On input w:
 - 1. Compute f(w).
 - 2. Run M on input f(w) and output whatever M outputs."

Corollary 16 (5.23). If $A \leq_m B$ and A is undecidable, then B is undecidable.

Reducibility and Decidability (cont.)

Theorem 17. $HALT_{TM}$ is undecidable.

• We show that $A_{\text{TM}} \leq_m HALT_{\text{TM}}$, i.e., a computable function f exists (as defined by F below) such that

 $\langle M, w \rangle \in A_{\mathrm{TM}} \iff f(\langle M, w \rangle) \in HALT_{\mathrm{TM}}.$

- F = "On input $\langle M, w \rangle$:
 - 1. Construct the following machine M'.
 - M' = "On input x:
 - (a) Run M on x.
 - (b) If M accepts, *accept*.
 - (c) If M rejects, enter a loop.
 - 2. Output $\langle M', w \rangle$."

Reducibility and Recognizability

Theorem 18 (5.28). If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary 19 (5.29). If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Corollary 20. If $A \leq_m B$ (i.e., $\overline{A} \leq_m \overline{B}$) and A is not co-Turing-recognizable, then B is not co-Turing-recognizable.

Note: "A is not co-Turing-recognizable" is the same as " \overline{A} is not Turing-recognizable".

Reducibility and Recognizability (cont.)

Theorem 21 (5.30 Part One). EQ_{TM} is not Turing-recognizable.

- We show that $A_{\rm TM}$ reduces to $\overline{EQ_{\rm TM}}$, i.e., $\overline{A_{\rm TM}}$ reduces to $EQ_{\rm TM}$.
- Since $\overline{A_{\rm TM}}$ is not Turing-recognizable, $EQ_{\rm TM}$ is not Turing-recognizable.
- F = "On input $\langle M, w \rangle$:
 - Construct the following two machines M₁ and M₂. M1 = "On any input: reject." M2 = "On any input: Run M on w. If it accepts, accept."
 Output (M₁, M₂)."

Reducibility and Recognizability (cont.)

Theorem 22 (5.30 Part Two). EQ_{TM} is not co-Turing-recognizable.

- We show that $A_{\rm TM}$ reduces to $EQ_{\rm TM}$.
- Since $A_{\rm TM}$ is not co-Turing-recognizable, $EQ_{\rm TM}$ is not co-Turing-recognizable.
- G = "On input $\langle M, w \rangle$:
 - Construct the following two machines M₁ and M₂.
 M1 = "On any input: accept."
 M2 = "On any input: Run M on w. If it accepts, accept."
 - 2. Output $\langle M_1, M_2 \rangle$."