
Time Complexity and NP-Completeness
(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 1 / 68

Time Complexity

Decidability of a problem merely indicates that the problem is
computationally solvable in principle.

It may not be solvable in practice if the solution requires an
inordinate amount of time or memory.

We shall introduce a way of measuring the time used to solve a
problem.

We then show how to classify problems according to the amount
of time required.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 2 / 68

Measuring Time Complexity

Let A = {0k1k | k ≥ 0}.
How much time does a single-tape TM need to decide A?

A single-tape TM M1 for A works as follows:

1. Scan across the tape and reject if a 0 appears to the right of a 1.
2. Repeat Stage 3 if both 0s and 1s remain on the tape.
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If no 0s or 1s remain on the tape, accept; otherwise, reject.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 3 / 68

Measuring Time Complexity (cont.)

We shall compute the running time of an algorithm purely as a
function of the length of the string representing the input.

Definition (7.1)

Let M be a deterministic TM that halts on all inputs.
The running time or time complexity of M is the function
f : N −→ N , where f (n) is the maximum number of steps that M
uses on any input of length n.
If f (n) is the running time of M , we say that M runs in time f (n) or
that M is an f (n) time Turing machine.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 4 / 68

Asymptotic Analysis

The exact running time of an algorithm is a complex expression.

We seek to understand the running time of the algorithm when
it is run on large inputs.

We do so by considering only the highest-order term of the
expression of its running time (discarding the coefficient of that
term and any lower-order terms).

For example, if f (n) = 6n3 + 2n2 + 20n + 45, we say that f is
asymptotically at most n3.

The asymptotic notation, or big-O notation, for describing this
relationship is f (n) = O(n3).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 5 / 68

Asymptotic Bounds

Let R+ be the set of positive real numbers.

Definition (7.2)

Let f and g be two functions f , g : N −→ R+.
We say that f (n) = O(g(n)) if positive integers c and n0 exist so
that, for every integer n ≥ n0,

f (n) ≤ cg(n).

When f (n) = O(g(n)), we say that g(n) is an (asymptotic) upper
bound for f (n).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 6 / 68

Asymptotic Bounds (cont.)

Intuitively, f (n) = O(g(n)) means that f is less than or equal to
g if we disregard differences up to a constant factor.

Big-O notation gives a way to say that one function is
asymptotically no more than another.

Big-O notation can appear in arithmetic expressions such as
O(n2) + O(n) (= O(n2)) and 2O(n).

Bounds of the form nc , for c > 0, are called polynomial bounds.

Bounds of the form 2nc , for c > 0, are called exponential bounds.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 7 / 68

Asymptotic Bounds (cont.)

To say that one function is asymptotically less than another, we
use small-o notation.

Definition (7.5)

Let f and g be two functions f , g : N −→ R+.
We say that f (n) = o(g(n)) if

lim
n→∞

f (n)

g(n)
= 0.

For example,
√

n = o(n) and n log n = o(n2).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 8 / 68

Analyzing Algorithms

Consider the single-tape TM M1 for deciding {0k1k | k ≥ 0}.
Stage 1 takes 2n (= O(n)) steps: n steps to scan the input and
another n steps to reposition the head at the left-hand end of
the tape.

Each execution of Stage 3 takes 2n steps and at most n/2 such
executions are required. So, Stages 2 and 3 take at most
(n/2)2n (= O(n2)) steps.

Stage 4 takes n (= O(n)) steps.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 9 / 68

Complexity Classes

Definition (7.7)

Let t : N −→ N be a function.
Define the time complexity class TIME(t(n)) to be {L | L is a
language decided by an O(t(n)) time Turing machine}.

A (= {0k1k | k ≥ 0}) ∈ TIME(n2), since M1 decides A in time
O(n2).

Is there a machine that decides A asymptotically faster?

In other words, is A in TIME(t(n)) for t(n) = o(n2)?

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 10 / 68

Complexity Classes (cont.)

Below is a faster single-tape TM for deciding A
(= {0k1k | k ≥ 0}).

M2 = “On input string w :

1. Same as Stage 1 of M1.
2. Repeat Stages 3 and 4 if both 0s and 1s remain on the tape.
3. If the total number of 0s and 1s remaining is odd, reject.
4. Cross off every other 0 and then every other 1.
5. If no 0s or 1s remain on the tape, accept; otherwise, reject.”

The running time of M2 is O(n log n) and hence
A ∈ TIME(n log n).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 11 / 68

Complexity Classes (cont.)

Below is an even faster TM, which has two tapes, for deciding A
(= {0k1k | k ≥ 0}).

M3 = “On input string w :

1. Same as Stage 1 of M1.
2. Copy the 0s on Tape 1 onto Tape 2.
3. Scan across the 1s on Tape 1 until the end of the input, crossing

off a 0 on Tape 2 for each 1. If there are not enough 0s, reject.
4. If all the 0s have now been crossed off, accept; otherwise,

reject.”

The running time of M3 is O(n).

This indicates that the complexity of A depends on the model of
computation selected.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 12 / 68

Complexity Relationships among Models

Theorem (7.8)

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time
multitape Turing machine has an equivalent O(t2(n)) time
single-tape Turing machine.

Let M be a k-tape TM running in t(n) time.

A single-tape TM S simulating M requires O(t(n)) tape cells to
store the current contents of M ’s tapes and the respective head
positions.

It takes O(t(n)) time for S to simulate each of M ’s t(n) steps.

So, the running time of S is t(n)× O(t(n)) = O(t2(n)).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 13 / 68

Complexity Relationships among Models (cont.)

Definition (7.9)

The running time of a nondeterministic TM N is the function
f : N −→ N , where f (n) is the maximum number of steps that N
uses on any branch of its computation on any input of length n.

Theorem (7.11)

Let t(n) be a function, where t(n) ≥ n. Then every t(n) time
nondeterministic single-tape Turing machine has an equivalent
2O(t(n)) time deterministic single-tape Turing machine.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 14 / 68

Complexity Relationships among Models (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 15 / 68

Complexity Relationships among Models (cont.)

Every branch of N ’s computation tree has a length of at most
t(n).

The total number of nodes in the tree is O(bt(n)), where b is the
maximum number of legal choices given by N ’s transition
function.

The running time of a simulating deterministic 3-tape TM is
O(t(n))× O(bt(n)) = 2O(t(n)).

The running time of a simulating deterministic single-tape TM is
(2O(t(n)))2 = 2O(2t(n)) = 2O(t(n)).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 16 / 68

Polynomial Time

For our purposes, polynomial differences in running time are
considered to be small, whereas exponential differences are
considered to be large.

Exponential time algorithms typically arise when we solve
problems by searching through a space of solutions, called
brute-force search.

All “reasonable” deterministic computational models are
polynomially equivalent, i.e., any one of them can simulate
another with a polynomial increase in running time.

We shall focus on aspects of time complexity theory that are
unaffected by polynomial differences in running time.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 17 / 68

The Class P

Definition (7.12)

P is the class of languages that are decidable in polynomial time on a
deterministic single-tape Turing machine. In other words,

P =
⋃
k

TIME(nk)

P is invariant for all models of computing that are polynomially
equivalent to the deterministic single-tape Turing machine.

P roughly corresponds to the class of problems that are
“realistically solvable” on a computer.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 18 / 68

Analyzing Algorithms for P Problems

Suppose that we have given a high-level description of a
polynomial time algorithm with stages. To analyze the
algorithm,

1. we first give a polynomial upper bound on the number of stages
that the algorithm uses, and

2. we then show that the individual stages can be implemented in
polynomial time on a reasonable deterministic model.

A “reasonable” encoding method for problems should be used,
which allows for polynomial time encoding and decoding of
objects into natural internal representation or into other
reasonable encodings.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 19 / 68

Problems in P

PATH = {〈G , s, t〉 | G is a directed graph that has a directed
path from s to t}.

Theorem (7.14)

PATH ∈ P.

M = “On input 〈G , s, t〉:
1. Place a mark on node s.
2. Repeat Stage 3 until no additional nodes are marked.
3. Scan all the edges of G . If an edge (a, b) is found going from a

marked node a to an unmarked node b, mark node b.
4. If t is marked, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 20 / 68

Problems in P (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 21 / 68

Problems in P (cont.)

RELPRIME = {〈x , y〉 | x and y are relatively prime}.

Theorem (7.15)

RELPRIME ∈ P.

The input size of a number x is log x (not x itself).

E = “On input 〈x , y〉:
1. Repeat Stages 2 and 3 until y = 0.
2. Assign x ← x mod y .
3. Exchange x and y .
4. Output x .”

R = “On input 〈x , y〉:
1. Run E on 〈x , y〉.
2. If E ’s output is 1, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 22 / 68

Problems in P (cont.)

Theorem (7.16)

Every context-free language belongs to P.

We assume that a CFG in Chomsky normal form is given for the
context-free language.
D = “On input w = w1w2 · · ·wn,

1. If w = ε and S → ε is a rule, accept.
2. For i = 1 to n,
3. For each variable A,
4. Is A→ b, where b = wi , a rule?
5. If yes, add A to table(i , i).
6. For l = 2 to n,
7. For i = 1 to n − l + 1,
8. Let j = i + l − 1,
9. For k = i to j − 1,
10. For each rule A→ BC ,
11. If B ∈ table(i , k) and C ∈ table(k + 1, j),

then put A in table(i , j).
12. If S ∈ table(1, n), accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 23 / 68

The Hamiltonian Path Problem

A Hamiltonian path in a directed graph is a directed path that
goes through each node exactly once.

HAMPATH = {〈G , s, t〉 | G is a directed graph with a
Hamiltonian path from s to t}.
We can easily obtain an exponential time algorithm for
HAMPATH .

No one knows whether HAMPATH is solvable in polynomial
time.

However, verifying the existence of a Hamiltonian path may be
much easier than determining its existence.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 24 / 68

The Hamiltonian Path Problem (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 25 / 68

The Class NP

Definition (7.18)

A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w , c〉 for some string c}.

The information represented by the symbol c is called a certificate, or
proof, of membership in A.
A polynomial time verifier runs in polynomial time in the length of w .

Definition (7.19)

NP is the class of polynomially verifiable languages, i.e., languages
that have polynomial time verifiers.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 26 / 68

The Class NP (cont.)

Theorem (7.20)

A language is in NP iff it is decided by some nondeterministic
polynomial time Turing machine.

Let V be a verifier for A ∈ NP that runs in time nk . Construct a
decider N for A as follows.

N = “On input w of length n:

1. Nondeterministically select string c of length nk .
2. Run V on input 〈w , c〉.
3. If V accepts, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 27 / 68

The Class NP (cont.)

Let N be a nondeterministic decider for a language A that runs
in time nk . Construct a verifier V for A as follows.

V = “On input 〈w , c〉:
1. Simulate N on input w , treating each symbol of c as a

description of the nondeterministic choice to make at each step.
2. If this branch of N’s computation accepts, accept; otherwise,

reject.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 28 / 68

The Class NP (cont.)

Definition (7.21)

NTIME(t(n)) = {L | L is a language decided by an O(t(n)) time
nondeterministic Turing machine}.

Corollary (7.22)

NP =
⋃

k NTIME(nk).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 29 / 68

Analyzing Algorithms for NP Problems

The class NP is insensitive to the choice of reasonable
nondeterministic computational model.

Like in the deterministic case, we use a high-level description to
present a nondeterministic polynomial time algorithm.

1. Each stage of a nondeterministic polynomial time algorithm
must have an obvious implementation in polynomial on a
reasonable nondeterministic model.

2. Every branch of its computation tree uses at most polynomially
many stages.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 30 / 68

Problems in NP

A clique in an undirected graph is a subgraph, wherein every two
nodes are connected by an edge.

A k-clique is a clique that contains k nodes.

CLIQUE = {〈G , k〉 | G is an undirected graph with a k-clique}.

Theorem (7.24)

CLIQUE is in NP.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 31 / 68

Problems in NP (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 32 / 68

Problems in NP (cont.)

V = “On input 〈〈G , k〉, c〉:
1. Test whether c is a set of k nodes in G .
2. Test whether G contains all edges connecting nodes in c .
3. If both pass, accept; otherwise, reject.”

Alternatively,
N = “On input 〈G , k〉:

1. Nondeterministically select a subset c of k nodes in G .
2. Test whether G contains all edges connecting nodes in c .
3. If yes, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 33 / 68

Problems in NP (cont.)

SUBSET SUM = {〈S , t〉 | S = {x1, · · · , xk} and for some
{y1, · · · , yl} ⊆ S , we have

∑
yi = t}.

Theorem (7.25)

SUBSET SUM is in NP.

V = “On input 〈〈S , t〉, c〉:
1. Test whether c is a collection of numbers that sum to t.
2. Test whether S contains the numbers in c .
3. If both pass, accept; otherwise, reject.”

Alternatively,
N = “On input 〈S , t〉:

1. Nondeterministically select a subset c of the numbers in S .
2. Test whether c is a collection of numbers that sum to t.
3. If yes, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 34 / 68

The Class co-NP

The complements of CLIQUE and SUBSET SUM , namely
CLIQUE and SUBSET SUM , are not obviously members of NP.

Verifying that something is not present seems to be more
difficult than verifying that it is present.

The complexity class co-NP contains the languages that are
complements of languages in NP.

We do not know whether co-NP is different from NP.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 35 / 68

P vs. NP

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 36 / 68

NP-Completeness

The complexity of certain problems in NP is related to that of
the entire class [Cook and Levin].

If a polynomial time algorithm exists for any of the problems, all
problems in NP would be polynomial time solvable.

These problems are called NP-complete.

SAT = {〈φ〉 | φ is a satisfiable Boolean formula}.

Theorem (7.27; Cook-Levin)

SAT ∈ P iff P = NP.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 37 / 68

Polynomial Time Reducibility

When problem A is efficiently reducible to problem B , an
efficient solution to B can be used to solve A efficiently.

Definition (7.28)

A function f : Σ∗ −→ Σ∗ is a polynomial time computable
function if some polynomial time Turing machine M , on every input
w , halts with just f (w) on its tape.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 38 / 68

Polynomial Time Reducibility (cont.)

Definition (7.29)

Language A is polynomial time mapping reducible (polynomial
time reducible) to language B , written A ≤P B , if there is a
polynomial time computable function f : Σ∗ −→ Σ∗, where for every
w ,

w ∈ A⇐⇒ f (w) ∈ B .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 39 / 68

Polynomial Time Reducibility (cont.)

M_A

f M_B
w f(w) yes/no

(det. polynomial)

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 40 / 68

Polynomial Time Reducibility (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 41 / 68

Polynomial Time Reducibility (cont.)

Theorem (7.31)

If A ≤P B and B ∈ P, then A ∈ P.

Let M be the polynomial time algorithm deciding B and f be
the polynomial time reduction from A to B .

N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 42 / 68

Example Polynomial Time Reducibility

A Boolean formula is in conjunctive normal form, called a
CNF-formula, if it comprises several clauses connected with ∧s,
as in

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6)

It is a 3CNF-formula if all the clauses have three literals, as in

(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6 ∨ x4) ∧ (x4 ∨ x5 ∨ x6)

3SAT = {〈φ〉 | φ is a satisfiable 3CNF-formula}.

Theorem (7.32)

3SAT is polynomial time reducible to CLIQUE .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 43 / 68

Example Polynomial Time Reducibility (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 44 / 68

NP-Completeness

Definition (7.34)

A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B (in which case,
we say that B is NP-hard).

Theorem (7.35)

If B is NP-complete and B ∈ P, then P = NP.

Theorem (7.36)

If B is NP-complete and B ≤P C for some C ∈ NP, then C is
NP-complete.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 45 / 68

The Cook-Levin Theorem

Theorem (7.37)

SAT is NP-complete.

SAT is in NP, as a nondeterministic polynomial time TM can
guess an assignment to a given formula φ and accept if the
assignment satisfies φ.

We next construct a polynomial time reduction for each
language A in NP to SAT .

The reduction takes a string w and produces a Boolean formula
φ that simulates the NP machine N for A on input w .

Assume that N runs in time nk (with some constant difference)
for some k > 0.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 46 / 68

The Cook-Levin Theorem (cont.)

Source: [Sipser 2006]
Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 47 / 68

The Cook-Levin Theorem (cont.)

If N accepts, φ has a satisfying assignment that corresponds to
the accepting computation.

If N rejects, no assignment satisfies φ.

Let C = Q ∪ Γ ∪ {#}. For 1 ≤ i , j ≤ nk and s ∈ C , we have a
variable xi ,j ,s .

Variable xi ,j ,s is assigned 1 iff cell [i , j] contains an s.

Construct φ as φcell ∧ φstart ∧ φaccept ∧ φmove, where . . .

Size of φcell: O(n2k).
Size of φstart: O(nk).
Size of φaccept: O(n2k).
Size of φmove: O(n2k).

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 48 / 68

The Cook-Levin Theorem (cont.)

φcell =
∧

1≤i ,j≤nk

[(∨
s∈C

xi ,j ,s

)
∧

(∧
s,t∈C ,s 6=t

(xi ,j ,s ∨ xi ,j ,t)

)]
.

φstart =
x1,1,# ∧ x1,2,q0∧
x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn∧
x1,n+3, ∧ · · · ∧ x1,nk−1, ∧ x1,nk ,# .

φaccept =
∨

1≤i ,j≤nk
xi ,j ,qaccept .

φmove =
∧

1≤i≤(nk−1),2≤j≤(nk−1)

(window (i , j) is legal) .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 49 / 68

The Cook-Levin Theorem (cont.)

Assume that δ(q1, a) = {(q1, b,R)} and
δ(q1, b) = {(q2, c , L), (q2, a,R)}.

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 50 / 68

The Cook-Levin Theorem (cont.)

Assume that δ(q1, a) = {(q1, b,R)} and
δ(q1, b) = {(q2, c , L), (q2, a,R)}.

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 51 / 68

The Cook-Levin Theorem (cont.)

The condition “window (i , j) is legal” can be expressed as∨
a1,··· ,a6 legal

(xi ,j−1,a1 ∧ xi ,j ,a2 ∧ xi ,j+1,a3∧
xi+1,j−1,a4 ∧ xi+1,j ,a5 ∧ xi+1,j+1,a6)

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 52 / 68

Another NP-Complete Problem

Theorem

3SAT is NP-complete.

The proof of the Cook-Levin theorem can be modified so that
the Boolean formula involved is in conjunctive normal form.

A CNF-formula can be converted in polynomial time to a
3CNF-formula (with a length polynomially bounded in the length
of the CNF-formula).

If a clause contains l literals (a1 ∨ a2 ∨ · · · ∨ al), we can replace
it with the l − 2 clauses

(a1 ∨ a2 ∨ z1) ∧ (z1 ∨ a3 ∨ z2) ∧ (z2 ∨ a4 ∨ z3)∧
· · · ∧ (zl−4 ∨ al−2 ∨ zl−3) ∧ (zl−3 ∨ al−1 ∨ al)

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 53 / 68

NP-Complete Problems

Theorem

CLIQUE is NP-complete.

CLIQUE is in NP and 3SAT ≤P CLIQUE .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 54 / 68

NP-Complete Problems (cont.)

A vertex cover of an undirected graph G is a subset of the nodes
where every edge of G touches one of those nodes.

VERTEX COVER = {〈G , k〉 | G is an undirected graph that
has a k-node vertex cover}.

Theorem

VERTEX COVER is NP-complete.

We show that 3SAT ≤P VERTEX COVER .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 55 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Note: Let k be m + 2l , where m is the number of variables and l the
number of clauses in φ.

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 56 / 68

NP-Complete Problems (cont.)

Theorem

HAMPATH is NP-complete.

We show that 3SAT ≤P HAMPATH .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 57 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 58 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 59 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 60 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 61 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 62 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 63 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 64 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 65 / 68

NP-Complete Problems (cont.)

Let UHAMPATH be the undirected version of the Hamiltonian
path problem HAMPATH .

Theorem

UHAMPATH is NP-complete.

An input 〈G , s, t〉 for HAMPATH is mapped to 〈G ′, s ′, t ′〉 for
UHAMPATH as follows.

Each node u of G , except for s and t, is replaced by a triple of
nodes uin, umid, and uout in G ′.

Nodes s and t are replaced by node sout = s ′ and t in = t ′.

Edges connect umid with uin and uout.

An edge connects uout and v in if (u, v) is an edge of G .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 66 / 68

NP-Complete Problems (cont.)

SUBSET SUM = {〈S , t〉 | S = {x1, · · · , xk} and for some
{y1, · · · , yl} ⊆ S , we have

∑
yi = t}.

Theorem

SUBSET SUM is NP-complete.

We show that 3SAT ≤P SUBSET SUM .

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 67 / 68

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Time Complexity and NP-Completeness Theory of Computing 2015 68 / 68

	Measuring Complexity
	The Class P
	The Class NP
	NP-Completeness
	Additional NP-Complete Problems

