Suggested Solutions to Midterm Problems

1. Let $A=\{a, b, c, d, e, f\}$ and $R=\{(a, c),(b, e),(e, f)\}$, which is a binary relation on A.
(a) Give a symmetric and transitive but not reflexive binary relation on A that includes R. Please present the relation using a directed graph.
Solution. (Hung-Wei Hsu)

(b) Find the smallest equivalence relation on A that includes R. Please present the relation using a directed graph.
Solution. (Hung-Wei Hsu)

2. Let L be a language over Σ (i.e., $L \subseteq \Sigma^{*}$). Two strings x and y in Σ^{*} are distinguishable by L if for some string z in Σ^{*}, exactly one of $x z$ and $y z$ is in L. When no such z exists, i.e., for every z in Σ^{*}, either both of $x z$ and $y z$ or neither of them are in L, we say that x and y are indistinguishable by L. Is indistinguishability by a language an equivalence relation (over Σ^{*})? Please justify your answer.

Solution.

Let us refer to the "indistinguishability by a language L " relation as $R_{L} . R_{L}$ is an equivalence relation, as it satisfies the following three conditions:

- Reflexivity $\left(x R_{L} x\right)$: For every w in $\Sigma^{*}, x w$ and $x w$ are identical and either both or neither of them are in L. Hence, $x R_{L} x$.
- Symmetry $\left(x R_{L} y\right.$ if and only if $\left.y R_{L} x\right)$: If $x R_{L} y$, i.e., for every w in Σ^{*}, either both of $x w$ and $y w$ or neither of them are in L, then for every w in Σ^{*}, both of $y w$ and $x w$ or neither of them are in L and hence $y R_{L} x$.
- Transitivity $\left(x R_{L} y\right.$ and $y R_{L} z$ implies $\left.x R_{L} z\right)$: Suppose $x R_{L} y$ and $y R_{L} z$, i.e., for every w in Σ^{*}, (a) either both of $x w$ and $y w$ or neither of them are in L and (b) either both of $y w$ and $z w$ or neither of them are in L. If both of $x w$ and $y w$ are in L, then
both of $y w$ and $z w$ are also in L and hence both of $x w$ and $z w$ are in L. If neither of $x w$ and $y w$ are in L, then neither of $y w$ and $z w$ are in L and hence neither of $x w$ and $z w$ are in L. So, for every w in Σ^{*}, either both of $x w$ and $z w$ or neither of them are in L and hence $x R_{L} z$.

3. (20 points) Give the state diagrams of DFAs recognizing the following languages. In all parts, the alphabet is $\{0,1\}$.
(a) $\{w \mid w$ contains the substring 1010, i.e., $w=x 1010 y$ for some x and $y\}$.

Solution. (Hung-Wei Hsu)

(b) $\{w \mid$ every odd position of w is a 0$\}$ (Note: see w as $w_{1} w_{2} \cdots w_{n}$, where $w_{i} \in\{0,1\}$). Solution. (Hung-Wei Hsu)

4. Let $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 101 as a substring or ends with a 1$\}$.
(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes L. The fewer states your NFA has, the more points you will be credited for this problem.
Solution. (Hung-Wei Hsu)

(b) Convert the preceding NFA systematically into an equivalent DFA (using the procedure discussed in class). Do not attempt to optimize the number of states, though you may omit the unreachable states.
Solution. (Hung-Wei Hsu)

5. Give the state diagram of a DFA that recognizes the following language:

$$
C_{6}=\{x \mid x \text { is a binary number that is a multiple of } 6\} .
$$

Solution. (Hung-Wei Hsu)

6. Consider the following CFG discussed in class, where for convenience the variables have been renamed with single letters.

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

Give the (leftmost) derivation and parse tree for the string $(a+(a)) \times a$.
Solution. (Hung-Wei Hsu)
The leftmost derivation.
The parse tree.

$$
\begin{aligned}
E & \Rightarrow T \\
& \Rightarrow T \times F \\
& \Rightarrow F \times F \\
& \Rightarrow(E) \times F \\
& \Rightarrow(E+T) \times F \\
& \Rightarrow(T+T) \times F \\
& \Rightarrow(F+T) \times F \\
& \Rightarrow(a+T) \times F \\
& \Rightarrow(a+F) \times F \\
& \Rightarrow(a+(E)) \times F \\
& \Rightarrow(a+(T)) \times F \\
& \Rightarrow(a+(F)) \times F \\
& \Rightarrow(a+(a)) \times F \\
& \Rightarrow(a+(a)) \times a
\end{aligned}
$$

7. Give a context-free grammar that generates the following language: $\left\{w \in\{a, b, c\}^{*} \mid\right.$ the number of a 's in w equals that of b 's or c 's\} (no restriction is imposed on the order in which the input symbols may appear). Please make the CFG as simple as possible and explain the intuition behind it.

Solution. There are several plausible ways of defining the CFG. Below is a more intuitive version:

$$
\begin{aligned}
& S \rightarrow T \mid U \\
& T \rightarrow a b T|a T b| T a b|b a T| b T a|T b a| T T|c| \varepsilon \\
& U \rightarrow a c U|a U c| U a c|c a U| c U a|U c a| U U|b| \varepsilon
\end{aligned}
$$

It is equivalent to the following much simpler version:

$$
\begin{aligned}
& S \rightarrow T \mid U \\
& T \rightarrow a T b|b T a| T T|c| \varepsilon \\
& U \rightarrow a U c|c U a| U U|b| \varepsilon
\end{aligned}
$$

The production rules for T (analogous for U) can be seen as derived from those for generating strings of balanced parentheses, the main difference being that T allows pairs of parentheses to appear in reversed order. T may be forced to appear in a particular position of a string (of terminals and non-terminals) during a derivation, which means c can be placed in any desired position of a generated string.
8. For two given languages A and B, define $A \diamond B=\{x y \mid x \in A$ and $y \in B$ and $|x|=|y|\}$. Prove that, if A and B are regular, then $A \diamond B$ is context-free. (Hint: construct a PDA where the stack is used to ensure that x and y are of equal length.)

Solution. Given finite-state automata N_{A} and N_{B} respectively for A and B, the basic idea is to construct a PDA for recognizing $A \diamond B$ that first simulates N_{A} and then nondeterministically switchs to simulate N_{B}. The PDA counts the number of symbols while simulating N_{A} by pushing a marker onto the stack whenever it reads an input symbol and it later cancels out the markers with the input symbols while simulating N_{B}.
Suppose $N_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ and $N_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right)$, assuming A and B have the same alphabet. We construct the PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{\text {start }},\left\{q_{\text {accept }}\right\}\right)$ for $A \diamond B$ as follows:

- $Q=\left\{q_{\text {start }}, q_{\text {accept }}\right\} \cup Q_{A} \cup Q_{B}$, where $q_{\text {start }}, q_{\text {accept }} \notin Q_{A} \cup Q_{B}$.
- $\Gamma=\{x, \$\}$.
- δ is defined as follows.

$$
\begin{cases}\delta\left(q_{\text {start }}, \varepsilon, \varepsilon\right)=\left\{\left(q_{A}, \$\right)\right\} & \\ \delta(q, a, \varepsilon)=\left\{\left(q^{\prime}, x\right) \mid q^{\prime} \in \delta_{A}(q, a)\right\} & q \in Q_{A} \text { and } a \neq \varepsilon \\ \delta(q, \varepsilon, \varepsilon)=\left\{\left(q^{\prime}, \varepsilon\right) \mid q^{\prime} \in \delta_{A}(q, \varepsilon)\right\} & q \in Q_{A} \\ \delta(q, \varepsilon, \varepsilon)=\left\{\left(q_{B}, \varepsilon\right)\right\} & q \in F_{A} \\ \delta(q, a, x)=\left\{\left(q^{\prime}, \varepsilon\right) \mid q^{\prime} \in \delta_{B}(q, a)\right\} & q \in Q_{B} \text { and } a \neq \varepsilon \\ \delta(q, \varepsilon, \varepsilon)=\left\{\left(q^{\prime}, \varepsilon\right) \mid q^{\prime} \in \delta_{B}(q, \varepsilon)\right\} & q \in Q_{B} \\ \delta(q, \varepsilon, \$)=\left\{\left(q_{\text {accept }}, \varepsilon\right)\right\} & q \in F_{B} \\ \delta(q, a, t)=\emptyset & \text { otherwise }\end{cases}
$$

It should be clear that $L(M)=A \diamond B$; we omit the detailed proof.
9. Prove, using the pumping lemma, that $\left\{1^{n^{2}} \mid n \geq 0\right\}$ is not context free.

Solution. Assume toward contradiction that p is the pumping length for $\left\{1^{n^{2}} \mid n \geq 0\right\}$. Consider a string $s=1^{p^{2}}$ in the language. Suppose that s can be pumped by dividing s as $u v x y z=1^{i} 1^{j} 1^{k} 1^{l} 1^{p^{2}-i-j-k-l}$, where $j+l>0(|v y| \geq 0)$ and $j+k+l \leq p(|v x y| \leq p)$. If we pump s up to $1^{i}\left(1^{j}\right)^{2} 1^{k}\left(1^{l}\right)^{2} 1^{p^{2}-i-j-k-l}=1^{i+2 j+k+2 l+p^{2}-i-j-k-l}=1^{\overline{p^{2}}+j+l}$. As $0<j+l \leq$ $p, p^{2}<p^{2}+j+l \leq p^{2}+p<p^{2}+2 p+1=(p+1)^{2}$ and hence $1^{i}\left(1^{j}\right)^{2} 1^{k}\left(1^{l}\right)^{2} 1^{p^{2}-i-j-k-l}$ is not in $\left\{1^{n^{2}} \mid n \geq 0\right\}$. So, s cannot be pumped, a contradiction.
10. For languages A and B, let the perfect shuffle of A and B be the language $\{w \mid w=$ $a_{1} b_{1} \cdots a_{k} b_{k}$, where $a_{1} \cdots a_{k} \in A$ and $b_{1} \cdots b_{k} \in B$, each $\left.a_{i}, b_{i} \in \Sigma\right\}$. Show that the class of context-free languages is not closed under perfect shuffle.

Solution. (Page 162 of [Sipser 2013])
Let A be the language $\left\{0^{i} 1^{i} \mid i \geq 0\right\}$ and B be $\left\{a^{j} b^{3 j} \mid j \geq 0\right\}$ (here, the alphabet Σ is $\{0,1, a, b\})$. Both are clearly context free. Their perfect shuffle equals $\left\{(0 a)^{k}(0 b)^{k}(1 b)^{2 k} \mid\right.$ $k \geq 0\}$, which is not context free (a proof by the pumping lemma is similar to that for $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and is omitted).
(Note: a string in the perfect shuffle must be the result of shuffling two strings of the same length. So, the total number of 0's and 1's in a string in the perfect shuffle of A and B must equal the total number of a 's and b 's.)

Appendix

- Common properties of a binary relation R on A :
- R is reflexive if for every $x \in A, x R x$.
- R is symmetric if for every $x, y \in A, x R y$ if and only if $y R x$.
- R is transitive if for every $x, y, z \in A, x R y$ and $y R z$ implies $x R z$.
- (Pumping Lemma for Context-Free Languages) If A is a context-free language, then there is a number p such that, if s is a string in A and $|s| \geq p$, then s may be divided into five pieces, $s=u v x y z$, satisfying the conditions: (1) for each $i \geq 0, u v^{i} x y^{i} z \in A$, (2) $|v y|>0$, and (3) $|v x y| \leq p$.

