

Minimization of DFAs (Based on [Sipser 2013] and [Wikipedia])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Minimization of DFAs

Theory of Computing 2017 1 / 6

Distinguishable and Indistinguishable Strings

- Solution Let L be a language over Σ (i.e., $L \subseteq \Sigma^*$).
- Two strings x and y in Σ^* are **distinguishable by** L if for some string z in Σ^* , exactly one of xz and yz is in L.
- When no such z exists, i.e., for every z in Σ*, either both of xz and yz or neither of them are in L,

we say that x and y are **indistinguishable by** L.

 Indistinguishable strings can be regarded as essentially equivalent.

Note: these concepts apply to all languages, not just the regular ones.

Myhill-Nerode Theorem

Siven a language L ⊆ Σ*, define a binary relation R_L over Σ* as follows:

xR_Ly iff $\forall z \in \Sigma^*(xz \in L \leftrightarrow yz \in L)$

• *R_L* can be shown to be an equivalence relation.

Theorem (Myhill-Nerode)

With R_L defined as above, the following are equivalent:

- 1. L is regular.
- 2. R_L is of finite index.

Moreover, the index of R_L equals the number of states in the smallest DFA that recognizes L.

Note: the *index* of an equivalence relation is the number of equivalence classes it induces.

Yih-Kuen Tsay (IM.NTU)

Minimization of DFAs

Minimization of DFAs

A DFA (Q, Σ, δ, q₀, F) for L defines an equivalence relation on Σ* that is a *refinement* of R_L.
Let L_q = {x ∈ Σ* | δ(q₀, x) = q}. Then,
for distinct q, q' ∈ Q, L_q ∩ L_{q'} = Ø, and
for every q ∈ Q, L_q is contained in an equivalence class of R_L.
Given a DFA that is not minimum for its language, there must be two distinct states q and q' such that both L_q and L_{q'} are contained in the same equivalence class of R_L and hence may be merged (without affecting the language recognized).

Minimization of DFAs (cont.)

- On the opposite, there are states that must remain separate.
- Poparently, for q ∈ F and q' ∈ Q \ F, L_q and L_{q'} are in different equivalence classes of R_L and hence q and q' must remain separate.
- For any two states, if they can make a transition on the same symbol to two different states that should remain separate, then they should also remain separate; this should be checked repeatedly.
- To minimize a DFA, we may start with the partition $\{F, Q \setminus F\}$ and refine the partition by iteratively checking whether two states in the same block should be separated.

Yih-Kuen Tsay (IM.NTU)

Minimization of DFAs

Theory of Computing 2017 5 / 6

Hopcroft's Minimization Algorithm

Algorithm Minimization(Q, Σ, δ, F); **begin**

 $P := \{F, Q \setminus F\}; W := \{F\};$ while W not empty do remove a set A from W: **for** each $c \in \Sigma$ **do** $X := \{q \mid \delta(q, c) \in A\};$ for each $Y \in P$ s.t. both $X \cap Y$ and $Y \setminus X$ not empty do replace Y in P by $X \cap Y$ and $Y \setminus X$; if $Y \in W$ then replace Y in W by $X \cap Y$ and $Y \setminus X$ else if $|X \cap Y| < |Y \setminus X|$ then add $X \cap Y$ to W else add $Y \setminus X$ to W

end

Yih-Kuen Tsay (IM.NTU)