
Theory of Computing 2017: Time Complexity and

NP-Completeness

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 Measuring Complexity

Time Complexity

• Decidability of a problem merely indicates that the problem is computationally solvable in principle.

• It may not be solvable in practice if the solution requires an inordinate amount of time or memory.

• We shall introduce a way of measuring the time used to solve a problem.

• We then show how to classify problems according to the amount of time required.

Measuring Time Complexity

• Let A = {0k1k | k ≥ 0}.

• How much time does a single-tape TM need to decide A?

• A single-tape TM M1 for A works as follows:

1. Scan across the tape and reject if a 0 appears to the right of a 1.

2. Repeat Stage 3 if both 0s and 1s remain on the tape.

3. Scan across the tape, crossing off a single 0 and a single 1.

4. If no 0s or 1s remain on the tape, accept ; otherwise, reject.

Measuring Time Complexity (cont.)

• We shall compute the running time of an algorithm purely as a function of the length of the string
representing the input.

Definition 1 (7.1). Let M be a deterministic TM that halts on all inputs.

The running time or time complexity of M is the function f : N −→ N , where f(n) is the
maximum number of steps that M uses on any input of length n.

If f(n) is the running time of M , we say that M runs in time f(n) or that M is an f(n) time Turing
machine.

1



Asymptotic Analysis

• The exact running time of an algorithm is a complex expression.

• We seek to understand the running time of the algorithm when it is run on large inputs.

• We do so by considering only the highest-order term of the expression of its running time (discarding
the coefficient of that term and any lower-order terms).

• For example, if f(n) = 6n3 + 2n2 + 20n+ 45, we say that f is asymptotically at most n3.

• The asymptotic notation, or big-O notation, for describing this relationship is f(n) = O(n3).

Asymptotic Bounds

• Let R+ be the set of positive real numbers.

Definition 2 (7.2). Let f and g be two functions f, g : N −→ R+.

We say that f(n) = O(g(n)) if positive integers c and n0 exist so that, for every integer n ≥ n0,

f(n) ≤ cg(n).

When f(n) = O(g(n)), we say that g(n) is an (asymptotic) upper bound for f(n).

Asymptotic Bounds (cont.)

• Intuitively, f(n) = O(g(n)) means that f is less than or equal to g if we disregard differences up to a
constant factor.

• Big-O notation gives a way to say that one function is asymptotically no more than another.

• Big-O notation can appear in arithmetic expressions such as O(n2) +O(n) (= O(n2)) and 2O(n).

• Bounds of the form nc, for c > 0, are called polynomial bounds.

• Bounds of the form 2n
c

, for c > 0, are called exponential bounds.

Asymptotic Bounds (cont.)

• To say that one function is asymptotically less than another, we use small-o notation.

Definition 3 (7.5). Let f and g be two functions f, g : N −→ R+.

We say that f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0.

• For example,
√
n = o(n) and n log n = o(n2).

Analyzing Algorithms

• Consider the single-tape TM M1 for deciding {0k1k | k ≥ 0}.

• Stage 1 takes 2n (= O(n)) steps: n steps to scan the input and another n steps to reposition the head
at the left-hand end of the tape.

• Each execution of Stage 3 takes 2n steps and at most n/2 such executions are required. So, Stages 2
and 3 take at most (n/2)2n (= O(n2)) steps.

• Stage 4 takes n (= O(n)) steps.

2



Complexity Classes

Definition 4 (7.7). Let t : N −→ N be a function.
Define the time complexity class TIME(t(n)) to be {L | L is a language decided by an O(t(n)) time

Turing machine}.

• A (= {0k1k | k ≥ 0}) ∈ TIME(n2), since M1 decides A in time O(n2).

• Is there a machine that decides A asymptotically faster?

• In other words, is A in TIME(t(n)) for t(n) = o(n2)?

Complexity Classes (cont.)

• Below is a faster single-tape TM for deciding A (= {0k1k | k ≥ 0}).

• M2 = “On input string w:

1. Same as Stage 1 of M1.

2. Repeat Stages 3 and 4 if both 0s and 1s remain on the tape.

3. If the total number of 0s and 1s remaining is odd, reject.

4. Cross off every other 0 and then every other 1.

5. If no 0s or 1s remain on the tape, accept ; otherwise, reject.”

• The running time of M2 is O(n log n) and hence A ∈ TIME(n log n).

Complexity Classes (cont.)

• Below is an even faster TM, which has two tapes, for deciding A (= {0k1k | k ≥ 0}).

• M3 = “On input string w:

1. Same as Stage 1 of M1.

2. Copy the 0s on Tape 1 onto Tape 2.

3. Scan across the 1s on Tape 1 until the end of the input, crossing off a 0 on Tape 2 for each 1. If
there are not enough 0s, reject.

4. If all the 0s have now been crossed off, accept ; otherwise, reject.”

• The running time of M3 is O(n).

• This indicates that the complexity of A depends on the model of computation selected.

Complexity Relationships among Models

Theorem 5 (7.8). Let t(n) be a function, where t(n) ≥ n. Then every t(n) time multitape Turing machine
has an equivalent O(t2(n)) time single-tape Turing machine.

• Let M be a k-tape TM running in t(n) time.

• A single-tape TM S simulating M requires O(t(n)) tape cells to store the current contents of M ’s tapes
and the respective head positions.

• It takes O(t(n)) time for S to simulate each of M ’s t(n) steps.

• So, the running time of S is t(n)×O(t(n)) = O(t2(n)).

3



Complexity Relationships among Models (cont.)

Definition 6 (7.9). The running time of a nondeterministic TM N is the function f : N −→ N , where f(n)
is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Theorem 7 (7.11). Let t(n) be a function, where t(n) ≥ n. Then every t(n) time nondeterministic single-
tape Turing machine has an equivalent 2O(t(n)) time deterministic single-tape Turing machine.

Complexity Relationships among Models (cont.)

Source: [Sipser 2006]

Complexity Relationships among Models (cont.)

• Every branch of N ’s computation tree has a length of at most t(n).

• The total number of nodes in the tree is O(bt(n)), where b is the maximum number of legal choices
given by N ’s transition function.

• The running time of a simulating deterministic 3-tape TM is O(t(n))×O(bt(n)) = 2O(t(n)).

• The running time of a simulating deterministic single-tape TM is (2O(t(n)))2 = 2O(2t(n)) = 2O(t(n)).

2 The Class P

Polynomial Time

• For our purposes, polynomial differences in running time are considered to be small, whereas exponential
differences are considered to be large.

• Exponential time algorithms typically arise when we solve problems by searching through a space of
solutions, called brute-force search.

• All “reasonable” deterministic computational models are polynomially equivalent , i.e., any one of them
can simulate another with a polynomial increase in running time.

• We shall focus on aspects of time complexity theory that are unaffected by polynomial differences in
running time.

4



The Class P

Definition 8 (7.12). P is the class of languages that are decidable in polynomial time on a deterministic
single-tape Turing machine. In other words,

P =
⋃
k

TIME(nk)

• P is invariant for all models of computing that are polynomially equivalent to the deterministic single-
tape Turing machine.

• P roughly corresponds to the class of problems that are “realistically solvable” on a computer.

Analyzing Algorithms for P Problems

• Suppose that we have given a high-level description of a polynomial time algorithm with stages. To
analyze the algorithm,

1. we first give a polynomial upper bound on the number of stages that the algorithm uses, and

2. we then show that the individual stages can be implemented in polynomial time on a reasonable
deterministic model.

• A “reasonable” encoding method for problems should be used, which allows for polynomial time en-
coding and decoding of objects into natural internal representation or into other reasonable encodings.

Problems in P

• PATH = {〈G, s, t〉 | G is a directed graph that has a directed path from s to t}.

Theorem 9 (7.14). PATH ∈ P .

• M = “On input 〈G, s, t〉:

1. Place a mark on node s.

2. Repeat Stage 3 until no additional nodes are marked.

3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked
node b, mark node b.

4. If t is marked, accept ; otherwise, reject.”

Problems in P (cont.)

Source: [Sipser 2006]

5



Problems in P (cont.)

• RELPRIME = {〈x, y〉 | x and y are relatively prime}.

Theorem 10 (7.15). RELPRIME ∈ P .

• The input size of a number x is log x (not x itself).

• E = “On input 〈x, y〉:

1. Repeat Stages 2 and 3 until y = 0.

2. Assign x← x mod y.

3. Exchange x and y.

4. Output x.”

• R = “On input 〈x, y〉:

1. Run E on 〈x, y〉.
2. If E’s output is 1, accept ; otherwise, reject.”

Problems in P (cont.)

Theorem 11 (7.16). Every context-free language belongs to P .

We assume that a CFG in Chomsky normal form is given for the context-free language.

D = “On input w = w1w2 · · ·wn,

1. If w = ε and S → ε is a rule, accept.
2. For i = 1 to n,
3. For each variable A,
4. Is A→ b, where b = wi, a rule?
5. If yes, add A to table(i, i).
6. For l = 2 to n,
7. For i = 1 to n− l + 1,
8. Let j = i + l− 1,
9. For k = i to j − 1,
10. For each rule A→ BC,
11. If B ∈ table(i, k) and C ∈ table(k + 1, j),

then put A in table(i, j).
12. If S ∈ table(1, n), accept; otherwise, reject.”

3 The Class NP

The Hamiltonian Path Problem

• A Hamiltonian path in a directed graph is a directed path that goes through each node exactly once.

• HAMPATH = {〈G, s, t〉 | G is a directed graph with a Hamiltonian path from s to t}.

• We can easily obtain an exponential time algorithm for HAMPATH.

• No one knows whether HAMPATH is solvable in polynomial time.

• However, verifying the existence of a Hamiltonian path may be much easier than determining its
existence.

6



The Hamiltonian Path Problem (cont.)

Source: [Sipser 2006]

The Class NP

Definition 12 (7.18). A verifier for a language A is an algorithm V , where

A = {w | V accepts 〈w, c〉 for some string c}.

The information represented by the symbol c is called a certificate, or proof , of membership in A.
A polynomial time verifier runs in polynomial time in the length of w.

Definition 13 (7.19). NP is the class of polynomially verifiable languages, i.e., languages that have poly-
nomial time verifiers.

The Class NP (cont.)

Theorem 14 (7.20). A language is in NP iff it is decided by some nondeterministic polynomial time Turing
machine.

• Let V be a verifier for A ∈ NP that runs in time nk. Construct a decider N for A as follows.

• N = “On input w of length n:

1. Nondeterministically select string c of length nk.

2. Run V on input 〈w, c〉.
3. If V accepts, accept ; otherwise, reject.”

The Class NP (cont.)

• Let N be a nondeterministic decider for a language A that runs in time nk. Construct a verifier V for
A as follows.

• V = “On input 〈w, c〉:

1. Simulate N on input w, treating each symbol of c as a description of the nondeterministic choice
to make at each step.

2. If this branch of N ’s computation accepts, accept ; otherwise, reject.”

7



The Class NP (cont.)

Definition 15 (7.21). NTIME(t(n)) = {L | L is a language decided by an O(t(n)) time nondeterministic
Turing machine}.

Corollary 16 (7.22). NP =
⋃

k NTIME(nk).

Analyzing Algorithms for NP Problems

• The class NP is insensitive to the choice of reasonable nondeterministic computational model.

• Like in the deterministic case, we use a high-level description to present a nondeterministic polynomial
time algorithm.

1. Each stage of a nondeterministic polynomial time algorithm must have an obvious implementation
in polynomial on a reasonable nondeterministic model.

2. Every branch of its computation tree uses at most polynomially many stages.

Problems in NP

• A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.

• A k-clique is a clique that contains k nodes.

• CLIQUE = {〈G, k〉 | G is an undirected graph with a k-clique}.

Theorem 17 (7.24). CLIQUE is in NP.

Problems in NP (cont.)

Source: [Sipser 2006]

Problems in NP (cont.)

• V = “On input 〈〈G, k〉, c〉:

1. Test whether c is a set of k nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If both pass, accept ; otherwise, reject.”

8



• Alternatively,

N = “On input 〈G, k〉:

1. Nondeterministically select a subset c of k nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If yes, accept ; otherwise, reject.”

Problems in NP (cont.)

• SUBSET SUM = {〈S, t〉 | S = {x1, · · · , xk} and for some
{y1, · · · , yl} ⊆ S, we have

∑
yi = t}.

Theorem 18 (7.25). SUBSET SUM is in NP.

• V = “On input 〈〈S, t〉, c〉:

1. Test whether c is a collection of numbers that sum to t.

2. Test whether S contains the numbers in c.

3. If both pass, accept ; otherwise, reject.”

• Alternatively,

N = “On input 〈S, t〉:

1. Nondeterministically select a subset c of the numbers in S.

2. Test whether c is a collection of numbers that sum to t.

3. If yes, accept ; otherwise, reject.”

The Class co-NP

• The complements of CLIQUE and SUBSET SUM , namely
CLIQUE and SUBSET SUM , are not obviously members of NP.

• Verifying that something is not present seems to be more difficult than verifying that it is present.

• The complexity class co-NP contains the languages that are complements of languages in NP.

• We do not know whether co-NP is different from NP.

P vs. NP

Source: [Sipser 2006]

9



4 NP-Completeness

NP-Completeness

• The complexity of certain problems in NP is related to that of the entire class [Cook and Levin].

• If a polynomial time algorithm exists for any of the problems, all problems in NP would be polynomial
time solvable.

• These problems are called NP-complete.

• SAT = {〈φ〉 | φ is a satisfiable Boolean formula}.

Theorem 19 (7.27; Cook-Levin). SAT ∈ P iff P = NP .

Polynomial Time Reducibility

• When problem A is efficiently reducible to problem B, an efficient solution to B can be used to solve
A efficiently.

Definition 20 (7.28). A function f : Σ∗ −→ Σ∗ is a polynomial time computable function if
some polynomial time Turing machine M , on every input w, halts with just f(w) on its tape.

Polynomial Time Reducibility (cont.)

Definition 21 (7.29). Language A is polynomial time mapping reducible (polynomial time reducible)
to language B, written A ≤P B, if there is a polynomial time computable function f : Σ∗ −→ Σ∗, where for
every w,

w ∈ A⇐⇒ f(w) ∈ B.

Polynomial Time Reducibility (cont.)

M_A

f M_B
w f(w) yes/no

(det. polynomial)

Polynomial Time Reducibility (cont.)

10



Source: [Sipser 2006]

Polynomial Time Reducibility (cont.)

Theorem 22 (7.31). If A ≤P B and B ∈ P , then A ∈ P .

• Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A
to B.

• N = “On input w:

1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs.”

Example Polynomial Time Reducibility

• A Boolean formula is in conjunctive normal form, called a CNF-formula, if it comprises several clauses
connected with ∧s, as in

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6)

• It is a 3CNF-formula if all the clauses have three literals, as in

(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6 ∨ x4) ∧ (x4 ∨ x5 ∨ x6)

• 3SAT = {〈φ〉 | φ is a satisfiable 3CNF-formula}.

Theorem 23 (7.32). 3SAT is polynomial time reducible to CLIQUE.

Example Polynomial Time Reducibility (cont.)

11



Source: [Sipser 2006]

NP-Completeness

Definition 24 (7.34). A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B (in which case, we say that B is NP-hard).

Theorem 25 (7.35). If B is NP-complete and B ∈ P, then P = NP.

Theorem 26 (7.36). If B is NP-complete and B ≤P C for some C ∈ NP, then C is NP-complete.

The Cook-Levin Theorem

Theorem 27 (7.37). SAT is NP-complete.

• SAT is in NP, as a nondeterministic polynomial time TM can guess an assignment to a given formula
φ and accept if the assignment satisfies φ.

• We next construct a polynomial time reduction for each language A in NP to SAT .

• The reduction takes a string w and produces a Boolean formula φ that simulates the NP machine N
for A on input w.

• Assume that N runs in time nk (with some constant difference) for some k > 0.

The Cook-Levin Theorem (cont.)

12



Source: [Sipser 2006]

The Cook-Levin Theorem (cont.)

• If N accepts, φ has a satisfying assignment that corresponds to the accepting computation.

• If N rejects, no assignment satisfies φ.

• Let C = Q ∪ Γ ∪ {#}. For 1 ≤ i, j ≤ nk and s ∈ C, we have a variable xi,j,s.

• Variable xi,j,s is assigned 1 iff cell[i, j] contains an s.

• Construct φ as φcell ∧ φstart ∧ φaccept ∧ φmove, where . . .

– Size of φcell: O(n2k).

– Size of φstart: O(nk).

– Size of φaccept: O(n2k).

– Size of φmove: O(n2k).

The Cook-Levin Theorem (cont.)

φcell =
∧

1≤i,j≤nk

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C,s 6=t

(xi,j,s ∨ xi,j,t)

 .

φstart =
x1,1,# ∧ x1,2,q0∧
x1,3,w1

∧ x1,4,w2
∧ · · · ∧ x1,n+2,wn

∧
x1,n+3, ∧ · · · ∧ x1,nk−1, ∧ x1,nk,# .

φaccept =
∨

1≤i,j≤nk

xi,j,qaccept .

φmove =
∧

1≤i≤(nk−1),2≤j≤(nk−1)

(window (i, j) is legal) .

13



The Cook-Levin Theorem (cont.)

• Assume that δ(q1, a) = {(q1, b, R)} and δ(q1, b) = {(q2, c, L), (q2, a, R)}.

Source: [Sipser 2006]

The Cook-Levin Theorem (cont.)

• Assume that δ(q1, a) = {(q1, b, R)} and δ(q1, b) = {(q2, c, L), (q2, a, R)}.

Source: [Sipser 2006]

The Cook-Levin Theorem (cont.)

• The condition “window (i, j) is legal” can be expressed as

∨
a1,··· ,a6 legal

(xi,j−1,a1
∧ xi,j,a2

∧ xi,j+1,a3
∧

xi+1,j−1,a4
∧ xi+1,j,a5

∧ xi+1,j+1,a6
)

Another NP-Complete Problem

Theorem 28. 3SAT is NP-complete.

• The proof of the Cook-Levin theorem can be modified so that the Boolean formula involved is in
conjunctive normal form.

• A CNF-formula can be converted in polynomial time to a 3CNF-formula (with a length polynomially
bounded in the length of the CNF-formula).

• If a clause contains l literals (a1 ∨ a2 ∨ · · · ∨ al), we can replace it with the l − 2 clauses

(a1 ∨ a2 ∨ z1) ∧ (z1 ∨ a3 ∨ z2) ∧ (z2 ∨ a4 ∨ z3)∧
· · · ∧ (zl−4 ∨ al−2 ∨ zl−3) ∧ (zl−3 ∨ al−1 ∨ al)

14



5 Additional NP-Complete Problems

NP-Complete Problems

Theorem 29. CLIQUE is NP-complete.

CLIQUE is in NP and 3SAT ≤P CLIQUE.

NP-Complete Problems (cont.)

• A vertex cover of an undirected graph G is a subset of the nodes where every edge of G touches one
of those nodes.

• V ERTEX COV ER = {〈G, k〉 | G is an undirected graph that has a k-node vertex cover}.

Theorem 30. V ERTEX COV ER is NP-complete.

• We show that 3SAT ≤P V ERTEX COV ER.

NP-Complete Problems (cont.)

Source: [Sipser 2006]

Note: Let k be m+ 2l, where m is the number of variables and l the number of clauses in φ.

NP-Complete Problems (cont.)

Theorem 31. HAMPATH is NP-complete.

We show that 3SAT ≤P HAMPATH.

NP-Complete Problems (cont.)

15



Source: [Sipser 2006]

NP-Complete Problems (cont.)

Source: [Sipser 2006]

NP-Complete Problems (cont.)

Source: [Sipser 2006]

16



NP-Complete Problems (cont.)

Source: [Sipser 2006]

NP-Complete Problems (cont.)

Source: [Sipser 2006]

NP-Complete Problems (cont.)

Source: [Sipser 2006]

NP-Complete Problems (cont.)

17



Source: [Sipser 2006]

NP-Complete Problems (cont.)

Source: [Sipser 2006]

NP-Complete Problems (cont.)

• Let UHAMPATH be the undirected version of the Hamiltonian path problem HAMPATH.

Theorem 32. UHAMPATH is NP-complete.

• An input 〈G, s, t〉 for HAMPATH is mapped to 〈G′, s′, t′〉 for UHAMPATH as follows.

• Each node u of G, except for s and t, is replaced by a triple of nodes uin, umid, and uout in G′.

• Nodes s and t are replaced by node sout = s′ and tin = t′.

• Edges connect umid with uin and uout.

• An edge connects uout and vin if (u, v) is an edge of G.

18



NP-Complete Problems (cont.)

• SUBSET SUM = {〈S, t〉 | S = {x1, · · · , xk} and for some
{y1, · · · , yl} ⊆ S, we have

∑
yi = t}.

Theorem 33. SUBSET SUM is NP-complete.

• We show that 3SAT ≤P SUBSET SUM .

NP-Complete Problems (cont.)

Source: [Sipser 2006]

19


