Theory of Computing 2017: Time Complexity and
NP-Completeness

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 Measuring Complexity
Time Complexity

e Decidability of a problem merely indicates that the problem is computationally solvable in principle.
e It may not be solvable in practice if the solution requires an inordinate amount of time or memory.
e We shall introduce a way of measuring the time used to solve a problem.

e We then show how to classify problems according to the amount of time required.

Measuring Time Complexity
o Let A= {0*1% |k > 0}.
e How much time does a single-tape TM need to decide A?
e A single-tape TM M; for A works as follows:

1. Scan across the tape and reject if a 0 appears to the right of a 1.
2. Repeat Stage 3 if both 0s and 1s remain on the tape.
3. Scan across the tape, crossing off a single 0 and a single 1.

4. If no Os or 1s remain on the tape, ; otherwise, reject.

Measuring Time Complexity (cont.)

e We shall compute the running time of an algorithm purely as a function of the length of the string
representing the input.
Definition 1 (7.1). Let M be a deterministic TM that halts on all inputs.

The running time or time complexity of M is the function f : NN — A, where f(n) is the
maximum number of steps that M uses on any input of length n.

If f(n) is the running time of M, we say that M runs in time f(n) or that M is an f(n) time Turing
machine.

Asymptotic Analysis

e The exact running time of an algorithm is a complex expression.

We seek to understand the running time of the algorithm when it is run on large inputs.

We do so by considering only the highest-order term of the expression of its running time (discarding
the coefficient of that term and any lower-order terms).

For example, if f(n) = 6n> + 2n? + 20n + 45, we say that f is asymptotically at most n>.

The asymptotic notation, or big-O notation, for describing this relationship is f(n) = O(n?).

Asymptotic Bounds

e Let RT be the set of positive real numbers.

Definition 2 (7.2). Let f and g be two functions f,g: N — R*.

We say that f(n) = O(g(n)) if positive integers ¢ and ng exist so that, for every integer n > ny,
f(n) < cg(n).
When f(n) = O(g(n)), we say that g(n) is an (asymptotic) upper bound for f(n).

Asymptotic Bounds (cont.)

e Intuitively, f(n) = O(g(n)) means that f is less than or equal to g if we disregard differences up to a
constant factor.

Big-O notation gives a way to say that one function is asymptotically no more than another.

Big-O notation can appear in arithmetic expressions such as O(n?) 4+ O(n) (= O(n?)) and 20,

Bounds of the form n¢, for ¢ > 0, are called polynomial bounds.

Bounds of the form 2™, for ¢ > 0, are called ezponential bounds.

Asymptotic Bounds (cont.)

e To say that one function is asymptotically less than another, we use small-o notation.

Definition 3 (7.5). Let f and g be two functions f,g: N — R™.
We say that f(n) =o(g(n)) if
)

im —= =0
n—oo g(n)

e For example, v/n = o(n) and nlogn = o(n?).

Analyzing Algorithms
e Consider the single-tape TM M, for deciding {0*1* | k > 0}.

e Stage 1 takes 2n (= O(n)) steps: n steps to scan the input and another n steps to reposition the head
at the left-hand end of the tape.

e Each execution of Stage 3 takes 2n steps and at most n/2 such executions are required. So, Stages 2
and 3 take at most (n/2)2n (= O(n?)) steps.

e Stage 4 takes n (= O(n)) steps.

Complexity Classes

Definition 4 (7.7). Let t : N'— N be a function.
Define the time complexity class TIME(¢t(n)) to be {L | L is a language decided by an O(t(n)) time
Turing machine}.

e A (={0*1% |k >0}) € TIME(n?), since M; decides A in time O(n?).
e Is there a machine that decides A asymptotically faster?

e In other words, is A in TIME(¢(n)) for t(n) = o(n?)?

Complexity Classes (cont.)
e Below is a faster single-tape TM for deciding A (= {0¥1¥ | k > 0}).
e My = “On input string w:

1. Same as Stage 1 of M;.

2. Repeat Stages 3 and 4 if both 0s and 1s remain on the tape.
3. If the total number of Os and 1s remaining is odd, reject.

4. Cross off every other 0 and then every other 1.

5. If no Os or 1s remain on the tape, ; otherwise, reject.”

e The running time of Ms is O(nlogn) and hence A € TIME(nlogn).

Complexity Classes (cont.)

e Below is an even faster TM, which has two tapes, for deciding A (= {0¥1% | k > 0}).
e M3 = “On input string w:

1. Same as Stage 1 of M;.
2. Copy the 0s on Tape 1 onto Tape 2.

3. Scan across the 1s on Tape 1 until the end of the input, crossing off a 0 on Tape 2 for each 1. If
there are not enough Os, reject.

4. If all the 0s have now been crossed off, ; otherwise, reject.”
e The running time of M3 is O(n).

e This indicates that the complexity of A depends on the model of computation selected.

Complexity Relationships among Models

Theorem 5 (7.8). Let t(n) be a function, where t(n) > n. Then every t(n) time multitape Turing machine
has an equivalent O(t?(n)) time single-tape Turing machine.

e Let M be a k-tape TM running in ¢(n) time.

e A single-tape TM S simulating M requires O(t(n)) tape cells to store the current contents of M’s tapes
and the respective head positions.

e It takes O(¢(n)) time for S to simulate each of M’s t(n) steps.

e So, the running time of S is t(n) x O(t(n)) = O(t*(n)).

Complexity Relationships among Models (cont.)

Definition 6 (7.9). The running time of a nondeterministic TM N is the function f : N'— N, where f(n)
is the mazimum number of steps that N uses on any branch of its computation on any input of length n.

Theorem 7 (7.11). Let t(n) be a function, where t(n) > n. Then every t(n) time nondeterministic single-
tape Turing machine has an equivalent 2°0) time deterministic single-tape Turing machine.

Complexity Relationships among Models (cont.)

Deterministic Nondeterministic
i A
T /<\ |
fln) reject j‘t ; j!\t f(n)
i
1, accept
; ,
Jﬁ I accept/reject *(reject lﬁ

FIGURE 7.10
Measuring deterministic and nondeterministic time

Source: [Sipser 2006]

Complexity Relationships among Models (cont.)

e Every branch of N’s computation tree has a length of at most ¢(n).

e The total number of nodes in the tree is O(b*(™)), where b is the maximum number of legal choices
given by N’s transition function.

e The running time of a simulating deterministic 3-tape TM is O(t(n)) x O(b"(™) = 20,

e The running time of a simulating deterministic single-tape TM is (20(4(7))2 = 20(2t(n)) — 90(t(n)),

2 The Class P

Polynomial Time

e For our purposes, polynomial differences in running time are considered to be small, whereas exponential
differences are considered to be large.

e Exponential time algorithms typically arise when we solve problems by searching through a space of
solutions, called brute-force search.

e All “reasonable” deterministic computational models are polynomially equivalent, i.e., any one of them
can simulate another with a polynomial increase in running time.

e We shall focus on aspects of time complexity theory that are unaffected by polynomial differences in
running time.

The Class P

Definition 8 (7.12). P is the class of languages that are decidable in polynomial time on a deterministic
single-tape Turing machine. In other words,

P = | JTIME(n)
k

e P is invariant for all models of computing that are polynomially equivalent to the deterministic single-
tape Turing machine.

e P roughly corresponds to the class of problems that are “realistically solvable” on a computer.

Analyzing Algorithms for P Problems

e Suppose that we have given a high-level description of a polynomial time algorithm with stages. To
analyze the algorithm,

1. we first give a polynomial upper bound on the number of stages that the algorithm uses, and

2. we then show that the individual stages can be implemented in polynomial time on a reasonable
deterministic model.

e A “reasonable” encoding method for problems should be used, which allows for polynomial time en-
coding and decoding of objects into natural internal representation or into other reasonable encodings.
Problems in P
e PATH = {(G,s,t) | G is a directed graph that has a directed path from s to ¢}.
Theorem 9 (7.14). PATH € P.

e M = “On input (G, s,t):

1. Place a mark on node s.
2. Repeat Stage 3 until no additional nodes are marked.

3. Scan all the edges of G. If an edge (a,b) is found going from a marked node a to an unmarked
node b, mark node b.

4. If t is marked, ; otherwise, reject.”

Problems in P (cont.)

FIGURE 7.13
The PATH problem: Is there a path from s to ¢?

Source: [Sipser 2006]

Problems in P (cont.)

o RELPRIME = {(z,y) | z and y are relatively prime}.
Theorem 10 (7.15). RELPRIME € P.

e The input size of a number z is logx (not x itself).
e F = “On input (z,y):

. Repeat Stages 2 and 3 until y = 0.

. Assign & + z mod y.

1
2
3. Exchange x and y.
4. Output z.”

e R = “On input (z,y):
1. Run F on (z,y).

2. If E’s output is 1, ; otherwise, reject.”

Problems in P (cont.)

Theorem 11 (7.16). Fuvery context-free language belongs to P.

HHEO©OWO0 Uk W=
[A A

—
»

w

We assume that a CFG in Chomsky normal form is given for the context-free language.

D = “On input w = wiws -+ - Wn,

If w=¢ and S — ¢ is a rule,
For i =1 to n,
For each variable A,
Is A — b, where b = w;, a rule?
If yes, add A to table(s, 7).
For [=2 to n,
Fori=1ton—-101+1,
Let j=di+1—1,
For k=1itoj—1,
For each rule A — BC,
If B € table(i, k) and C € table(k + 1, 7),
then put A in table(s, j).
If S € table(1l,n), ; otherwise, reject.”

The Class NP

The Hamiltonian Path Problem

A Hamiltonian path in a directed graph is a directed path that goes through each node exactly once.

HAMPATH = {(G, s,t) | G is a directed graph with a Hamiltonian path from s to ¢}.
e We can easily obtain an exponential time algorithm for HAM PATH.

e No one knows whether HAM PAT H is solvable in polynomial time.

However, verifying the existence of a Hamiltonian path may be much easier than determining its
existence.

The Hamiltonian Path Problem (cont.)

FIGURE 7.17
A Hamiltonian path goes through every node exactly once

Source: [Sipser 2006]

The Class NP

Definition 12 (7.18). A verifier for a language A is an algorithm V', where
A ={w |V accepts (w, ¢) for some string c}.

The information represented by the symbol ¢ is called a certificate, or proof, of membership in A.
A polynomial time verifier runs in polynomial time in the length of w.

Definition 13 (7.19). NP is the class of polynomially verifiable languages, i.e., languages that have poly-
nomial time verifiers.

The Class NP (cont.)

Theorem 14 (7.20). A language is in NP iff it is decided by some nondeterministic polynomial time Turing
machine.

e Let V be a verifier for A € NP that runs in time n*. Construct a decider N for A as follows.
e N = “On input w of length n:

1. Nondeterministically select string ¢ of length n*.
2. Run V on input (w, ¢).

3. If V accepts, ; otherwise, reject.”

The Class NP (cont.)

e Let N be a nondeterministic decider for a language A that runs in time n*. Construct a verifier V' for
A as follows.

e V' = “On input (w,c):

1. Simulate N on input w, treating each symbol of ¢ as a description of the nondeterministic choice
to make at each step.

2. If this branch of N’s computation accepts, ; otherwise, reject.”

The Class NP (cont.)

Definition 15 (7.21). NTIME(¢(n)) = {L | L is a language decided by an O(t(n)) time nondeterministic
Turing machine}.

Corollary 16 (7.22). NP = |J, NTIME(n*).

Analyzing Algorithms for NP Problems

e The class NP is insensitive to the choice of reasonable nondeterministic computational model.

e Like in the deterministic case, we use a high-level description to present a nondeterministic polynomial
time algorithm.

1. Each stage of a nondeterministic polynomial time algorithm must have an obvious implementation
in polynomial on a reasonable nondeterministic model.

2. Every branch of its computation tree uses at most polynomially many stages.

Problems in NP

e A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.
e A k-clique is a clique that contains k& nodes.
e CLIQUE = {(G,k) | G is an undirected graph with a k-clique}.

Theorem 17 (7.24). CLIQUE is in NP.

Problems in NP (cont.)

FIGURE 7.23
A graph with a 5-clique

Source: [Sipser 2006]

Problems in NP (cont.)
e V = “On input ((G, k), c):

1. Test whether c is a set of k£ nodes in G.
2. Test whether G contains all edges connecting nodes in c.

3. If both pass, ; otherwise, reject.”

e Alternatively,
N = “On input (G, k):

1. Nondeterministically select a subset ¢ of k nodes in G.
2. Test whether G contains all edges connecting nodes in c.

3. If yes, ; otherwise, reject.”

Problems in NP (cont.)

e SUBSET_SUM = {(S, 1) | S = {21,

{y1,- -,y } C S, we have > y;, =t}
Theorem 18 (7.25). SUBSET_SUM is in NP.
e V' = “On input ((S,t),c):

1. Test whether ¢ is a collection of numbers that sum to ¢.
2. Test whether S contains the numbers in c.

3. If both pass, ; otherwise, reject.”
e Alternatively,
N = “On input (S, t):

1. Nondeterministically select a subset ¢ of the numbers in S.
2. Test whether c is a collection of numbers that sum to ¢.

3. If yes, ; otherwise, reject.”

The Class co-NP

e The complements of CLIQUE and SUBSET_SUM,

CLIQUE and SUBSET_SUM, are not obviously members of NP.

71'16}

and for some

namely

e Verifying that something is not present seems to be more difficult than verifying that it is present.

e The complexity class co-NP contains the languages that are complements of languages in NP.

o We do not know whether co-NP is different from NP.

P vs. NP
T TN
A sy
/ ’
; TN
/ T f //
.‘I‘ / P\ / II‘-’: P=NP
| |/ |
Vo f’j o 4 \
\\\ //_, P
\\\ o ,/// \\\k s

FIGURE 7.26
One of these two possibilities is correct

Source: [Sipser 2006]

4 NP-Completeness

NP-Completeness

e The complexity of certain problems in NP is related to that of the entire class [Cook and Levin].

e If a polynomial time algorithm exists for any of the problems, all problems in NP would be polynomial
time solvable.

e These problems are called NP-complete.
o SAT = {(¢) | ¢ is a satisfiable Boolean formula}.
Theorem 19 (7.27; Cook-Levin). SAT € P iff P = NP.

Polynomial Time Reducibility

e When problem A is efficiently reducible to problem B, an efficient solution to B can be used to solve
A efficiently.

Definition 20 (7.28). A function f : ¥* — ¥* is a polynomial time computable function if
some polynomial time Turing machine M, on every input w, halts with just f(w) on its tape.

Polynomial Time Reducibility (cont.)

Definition 21 (7.29). Language A is polynomial time mapping reducible (polynomial time reducible)
to language B, written A <p B, if there is a polynomial time computable function f : ¥* — ¥*, where for
every w,

we A<= f(w) € B.

Polynomial Time Reducibility (cont.)

w £ (w) yes/no
%| £ M B >

(det. polynomial)
M A

Polynomial Time Reducibility (cont.)

10

FIGURE 7.30
Polynomial time function f reducing A to B

Source: [Sipser 2006]

Polynomial Time Reducibility (cont.)
Theorem 22 (7.31). If A<p B and B € P, then A € P.

e Let M be the polynomial time algorithm deciding B and f be the polynomial time reduction from A
to B.

e N = “On input w:

1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Example Polynomial Time Reducibility

e A Boolean formula is in conjunctive normal form, called a CNF-formula, if it comprises several clauses
connected with As, as in

(1’1 \/1‘72\/1'73\/’134)/\(1’3 \/T5\/£IZ‘6)/\((E3 \/TG)

e It is a 3CNF-formula if all the clauses have three literals, as in

(1‘1 V@V?g)/\(mg \/Ii5\/1‘6)/\($3 \/1‘76\/$4)/\(334\/£C5\/1‘6)

e 3SAT = {(¢) | ¢ is a satisfiable 3CNF-formula}.
Theorem 23 (7.32). 3SAT is polynomial time reducible to CLIQUE.

Example Polynomial Time Reducibility (cont.)

11

FIGURE 7.33
The graph that the reduction produces from
o= (Va1 Va) AN (TIVI2IVT2) A (TT Va2 V)

Source: [Sipser 2006]

NP-Completeness
Definition 24 (7.34). A language B is NP-complete if it satisfies two conditions:
1. Bis in NP, and
2. every A in NP is polynomial time reducible to B (in which case, we say that B is NP-hard).
Theorem 25 (7.35). If B is NP-complete and B € P, then P = NP.
Theorem 26 (7.36). If B is NP-complete and B <p C for some C € NP, then C is NP-complete.

The Cook-Levin Theorem
Theorem 27 (7.37). SAT is NP-complete.

e SAT is in NP, as a nondeterministic polynomial time TM can guess an assignment to a given formula
¢ and accept if the assignment satisfies ¢.

e We next construct a polynomial time reduction for each language A in NP to SAT.

e The reduction takes a string w and produces a Boolean formula ¢ that simulates the NP machine N
for A on input w.

e Assume that N runs in time n* (with some constant difference) for some k > 0.

The Cook-Levin Theorem (cont.)

12

4 # gg|wq w2| Sa an[u ‘ s 1 L ? start configuration
‘ # | second configuration
| #
/‘I window
nk /

N
| -
|
l # # | n*th configuration

FIGURE 7.38

A tableau is an n* x n* table of configurations

Source: [Sipser 2006]
The Cook-Levin Theorem (cont.)

e If NV accepts, ¢ has a satisfying assignment that corresponds to the accepting computation.

e If N rejects, no assignment satisfies ¢.

Let C = QUT U{#}. For 1 <i,j <nF and s € C, we have a variable z; ; .

Variable z; ; s is assigned 1 iff cell[i, j] contains an s.

Construct (b as ¢Cell A ¢start A ¢accept A ¢movea where ...
— Size of Geen: O(n?F).
— Size of Ggtars: O(nF).
— Size of Paccept: O(n%).
— Size of dmove: O(nz’“).

The Cook-Levin Theorem (cont.)
¢cell = /\ (\/ mi,j,s) A /\ (wi,jys V xi,j,t)
1<i,j<nk seC s,teC,s#t
T1,1,# N T1,2,goN

¢start = T1,3,w; A T1,4,w2 ANRERA ‘rl,n+2,wn/\
T TIAL R LR

¢accept = \/ Li,5,qaccept *

1<i,j<n*

Pmove = /\ (window (i, 7) is legal) .
1<i<(nk—1),2<5<(nk—1)

13

The Cook-Levin Theorem (cont.)

e Assume that 6(q1,a) = {(q1,b, R)} and &(q1,b) = {(q2,¢, L), (q2,a, R)}.

b b
@ == b = © =
g2l alc ala|qg La alb
d # | b | a al|b|a ¢ b
@ #|b|a (©) a|b|q ® c b

FIGURE 7.39
Examples of legal windows

Source: [Sipser 2006]

The Cook-Levin Theorem (cont.)

e Assume that 6(q1,a) = {(¢1,b, R)} and §(q1,b) = {(q2,¢, L), (g2,a, R)}.

(a) (b) (c)

al|a|a 1| ala G2 | b [q2

FIGURE 7.40
Examples of illegal windows

Source: [Sipser 2006]

The Cook-Levin Theorem (cont.)

e The condition “window (i, j) is legal” can be expressed as

\/ (Tij—1,01 A Tijran N Tij+1,a5N

Tit1,j—1,a0 N Tit1,j,a5 N Titl,j+1,a6)
a1, a6 legal

Another NP-Complete Problem
Theorem 28. 3SAT is NP-complete.

e The proof of the Cook-Levin theorem can be modified so that the Boolean formula involved is in
conjunctive normal form.

e A CNF-formula can be converted in polynomial time to a 3CNF-formula (with a length polynomially
bounded in the length of the CNF-formula).

e If a clause contains [literals (a1 Vag V ---V a;), we can replace it with the [— 2 clauses

(a1 VasVzi)ANZIVasVze) A(ZzVagVzs)A
SERAN (Zl_4 Va_oV Zl_g) A (Zl_g Va1V al)

14

5 Additional NP-Complete Problems

NP-Complete Problems
Theorem 29. CLIQUE is NP-complete.

CLIQUE is in NP and 3SAT <p CLIQUE.

NP-Complete Problems (cont.)

e A vertex cover of an undirected graph G is a subset of the nodes where every edge of G touches one
of those nodes.

e VERTEX COVER = {(G,k) | G is an undirected graph that has a k-node vertex cover}.
Theorem 30. VERTEX _COV ER is NP-complete.

o We show that 3SAT <p VERTEX COVER.

NP-Complete Problems (cont.)

FIGURE 7.45
The graph that the reduction produces from
d=(ri Vo V) A(TIVI2VTEZ) A (T1Vae Vo)

Source: [Sipser 2006]

Note: Let k be m + 2, where m is the number of variables and [the number of clauses in ¢.

NP-Complete Problems (cont.)

Theorem 31. HAMPATH is NP-complete.
We show that 3SAT <p HAMPATH.

NP-Complete Problems (cont.)

15

FIGURE 7.47
Representing the variable x; as a diamond structure

Source: [Sipser 2006]

NP-Complete Problems (cont.)

FIGURE 7.48
Representing the clause ¢; as a node

Source: [Sipser 2006]

NP-Complete Problems (cont.)

Oa
O e
Qe

FIGURE 7.49
The high-level structure of G

Source: [Sipser 2006]

16

NP-Complete Problems (cont.)

1 Ca

O<®QOE ugue N
:

\ ‘l.l

FIGURE 7.50
The horizontal nodes in a diamond structure

Source: [Sipser 2006]

NP-Complete Problems (cont.)

FIGURE 7.51
The additional edges when clause ¢; contains z;

Source: [Sipser 2006)

NP-Complete Problems (cont.)

FIGURE 7.52
The additional edges when clause ¢; contains z;

Source: [Sipser 2006)

NP-Complete Problems (cont.)

17

zag-ng

FIGURE 7.53
Zig-zagging and zag-zigging through a diamond, as determined by the
satisfying assignment

Source: [Sipser 2006]

NP-Complete Problems (cont.)

FIGURE 7.54
This situation cannot occur

Source: [Sipser 2006]

NP-Complete Problems (cont.)

Let UHAM PATH be the undirected version of the Hamiltonian path problem HAMPATH.
Theorem 32. UHAMPATH is NP-complete.

An input (G, s,t) for HAMPATH is mapped to (G',s',t') for UHAMPATH as follows.
Each node u of G, except for s and ¢, is replaced by a triple of nodes u'™™, «™4, and u°" in G'.
Nodes s and t are replaced by node s°" = s’ and " = ¢/.

mid with ™ and u°ut.

Edges connect

An edge connects u°" and v™™ if (u,v) is an edge of G.

18

NP-Complete Problems (cont.)

e SUBSET_SUM = {(S,1) | S = {21,

{y1,- - ,u} C S, we have > y; =t}
Theorem 33. SUBSET_SUM is NP-complete.

e We show that 3SAT <p SUBSET_SUM.

NP-Complete Problems (cont.)

1 2 3 4 - ller e Ck

v |1 0 0 0 - 01 0 0
z(l 000 - 0[0 O 0
Y2 100 - 0]0 1 0
) 100 --- 01 0 0

Y3 10 -+ 0|1 1 0
z3 10 .- 0[]0 0 1
U 1{0 0 0

2 1(0 0 0

g1 1 0 0
h 1 0 0
92 1 0
ho 1 0
Gk 1
e | 1
t|r 111 --- 113 3 --- 3

FIGURE 7.57
Reducing 3SAT to SUBSET-SUM

Source: [Sipser 2006)

19

73316}

and for some

