Theory of Computing 2018: Introduction and Preliminaries

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 Overview

What It Is

• The central question:

What are the fundamental capabilities and limitations of computers?

- Three main areas:
 - Automata Theory
 - Computability Theory
 - Complexity Theory

Complexity Theory

- Some problems are easy and some hard.

 For example, sorting is easy and scheduling is hard.
- The central question of complexity theory:

 What makes some problems computationally hard and others easy?
- We don't have the answer to it.
- However, researchers have found a scheme for classifying problems according to their computational difficulty.
- One practical application: cryptography/security.

Dealing with Hard Problems

Options for dealing with a hard problem:

- Try to simplify it (the hard part of the problem might be unnecessary).
- Settle for an approximate solution.
- Find a solution that usually runs fast.
- Consider alternative types of computation.

Computability Theory

- Alan Turing, among other mathematicians, discovered in the 1930s that certain basic problems cannot be solved by computers.
- One example is the problem of determining whether a mathematical statement is true or false.
- Theoretical models of computers developed at that time eventually lead to the construction of actual computers.
- The theories of computability and complexity are closely related.
- Complexity theory seeks to classify problems as easy ones and hard ones, while in computability theory the classification is by whether the problem is solvable or not.

Automata Theory

- The theories of computability and complexity require a precise, formal definition of a computer.
- Automata theory deals with the definitions and properties of mathematical models of computation.
- Two basic and practically useful models:
 - Finite-state, or simply finite, automaton
 - Context-free grammar (pushdown automaton)

2 Mathematical Notions and Terminology

Sets

- Set, element (member), subset, proper subset
- Multiset
- Description of a set
- The empty set (\emptyset)
- Finite set, infinite set
- Union, intersection, complement
- Power set
- Venn diagram

Sets (cont.)

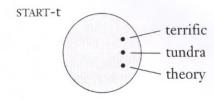


FIGURE **0.1**Venn diagram for the set of English words starting with "t"

Source: [Sipser 2006]

Sets (cont.)

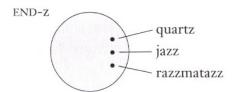


FIGURE **0.2**Venn diagram for the set of English words ending with "z"

Source: [Sipser 2006]

Sets (cont.)

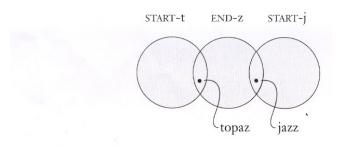


FIGURE **0.3**Overlapping circles indicate common elements

Source: [Sipser 2006]

Sets (cont.)

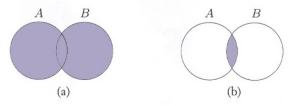


FIGURE **0.4** Diagrams for (a) $A \cup B$ and (b) $A \cap B$

Source: [Sipser 2006]

Sequences and Tuples

• A sequence of objects is a list of these objects in some order. Order is essential and repetition is also allowed.

- ullet Finite sequences are often called *tuples*. A sequence with k elements is a k-tuple; a 2-tuple is also called a pair.
- The Cartesian product, or cross product, of A and B, written as $A \times B$, is the set of all pairs (x, y) such that $x \in A$ and $y \in B$.
- Cartesian products generalize to k sets, $A_1, A_2, ..., A_k$, written as $A_1 \times A_2 \times ... \times A_k$. A^k is a shorthand for $A \times A \times ... \times A$ (k times).

Functions

- A function sets up an input-output relationship, where the same input always produces the same output.
- If f is a function whose output is b when the input is a, we write f(a) = b.
- A function is also called a mapping; if f(a) = b, we say that f maps a to b.

Functions (cont.)

- The set of possible inputs to a function is called its *domain*; the outputs come from a set called its *range*.
- A function is *onto* if it uses all the elements of the range (it is *one-to-one* if ...).
- The notation $f: D \longrightarrow R$ says that f is a function with domain D and range R.
- More notions and terms: k-ary function, unary function, binary function, infix notation, prefix notation

Relations

- A predicate, or property, is a function whose range is {TRUE,FALSE}.
- A predicate whose domain is a set of k-tuples $A \times ... \times A$ is called a (k-ary) relation on A.
- A 2-ary relation is also called a binary relation.

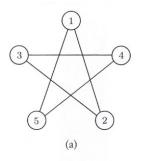
Equivalence Relations

- An equivalence relation is a special type of binary relation that captures the notion of two objects being equal in some sense.
- A binary relation R on A is an equivalence relation if
 - 1. R is reflexive (for every x in A, xRx),
 - 2. R is symmetric (for every x and y in A, xRy if and only if yRx), and
 - 3. R is transitive (for every x, y, and z in A, xRy and yRz implies xRz).

Graphs

- Undirected graph, node (vertex), edge (link), degree
- Description of a graph: G = (V, E)
- $\bullet\,$ Labeled graph
- Subgraph, induced subgraph
- Path, simple path, cycle, simple cycle
- Connected graph
- Tree, root, leaf
- Directed graph, outdegree, indegree
- Strongly connected graph

Graphs (cont.)



(b)

FIGURE **0.12** Examples of graphs

Source: [Sipser 2006]

Graphs (cont.)

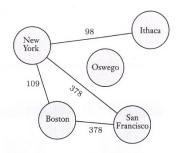


FIGURE **0.13** Cheapest nonstop air fares between various cities

Source: [Sipser 2006]

Graphs (cont.)

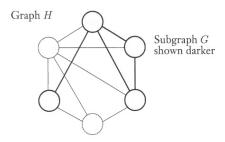


FIGURE 0.14 Graph G (shown darker) is a subgraph of H

Source: [Sipser 2006]

Graphs (cont.)

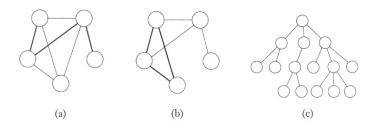


FIGURE **0.15**(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

Source: [Sipser 2006]

Graphs (cont.)

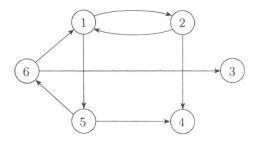


FIGURE **0.16** A directed graph

Source: [Sipser 2006]

Graphs (cont.)

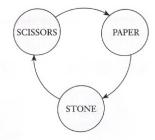


FIGURE **0.18**The graph of the relation *beats*

Source: [Sipser 2006]

Strings and Languages

- An alphabet is any finite set of symbols.
- A string over an alphabet is a finite sequence of symbols from that alphabet.
- The length of a string w, written as |w|, is the number of symbols that w contains.
- The string of length 0 is called the *empty string*, written as ε .
- The concatenation of x and y, written as xy, is the string obtained from appending y to the end of x.
- A language is a set of strings.
- More notions and terms: reverse, substring, lexicographic ordering.

Boolean Logic

- Boolean logic is a mathematical system built around the two Boolean values TRUE (1) and FALSE (0).
- Boolean values can be manipulated with *Boolean operations*: negation or NOT (\neg) , conjunction or AND (\land) , disjunction or OR (\lor) .

$$\begin{array}{lll} 0 \wedge 0 \stackrel{\triangle}{=} 0 & 0 \vee 0 \stackrel{\triangle}{=} 0 & \neg 0 \stackrel{\triangle}{=} 1 \\ 0 \wedge 1 \stackrel{\triangle}{=} 0 & 0 \vee 1 \stackrel{\triangle}{=} 1 & \neg 1 \stackrel{\triangle}{=} 0 \\ 1 \wedge 0 \stackrel{\triangle}{=} 0 & 1 \vee 0 \stackrel{\triangle}{=} 1 \\ 1 \wedge 1 \stackrel{\triangle}{=} 1 & 1 \vee 1 \stackrel{\triangle}{=} 1 \end{array}$$

• Unknown Boolean values are represented symbolically by Boolean variables or propositions, e.g., P, Q, etc.

7

Boolean Logic (cont.)

• Additional Boolean operations: exclusive or or XOR (\oplus) , equality/equivalence $(\leftrightarrow \text{ or } \equiv)$, implication (\rightarrow) .

$$\begin{array}{llll} 0 \oplus 0 \stackrel{\Delta}{=} 0 & 0 \leftrightarrow 0 \stackrel{\Delta}{=} 1 & 0 \to 0 \stackrel{\Delta}{=} 1 \\ 0 \oplus 1 \stackrel{\Delta}{=} 1 & 0 \leftrightarrow 1 \stackrel{\Delta}{=} 0 & 0 \to 1 \stackrel{\Delta}{=} 1 \\ 1 \oplus 0 \stackrel{\Delta}{=} 1 & 1 \leftrightarrow 0 \stackrel{\Delta}{=} 0 & 1 \to 0 \stackrel{\Delta}{=} 0 \\ 1 \oplus 1 \stackrel{\Delta}{=} 0 & 1 \leftrightarrow 1 \stackrel{\Delta}{=} 1 & 1 \to 1 \stackrel{\Delta}{=} 1 \end{array}$$

• All in terms of conjunction and negation:

$$\begin{array}{lll} P \vee Q & \equiv & \neg (\neg P \wedge \neg Q) \\ P \rightarrow Q & \equiv & \neg P \vee Q \\ P \leftrightarrow Q & \equiv & (P \rightarrow Q) \wedge (Q \rightarrow P) \\ P \oplus Q & \equiv & \neg (P \leftrightarrow Q) \end{array}$$

Logical Equivalences and Laws

- Two logical expressions/formulae are *equivalent* if each of them implies the other, i.e., they have the same truth value.
- Equivalence plays a role analogous to equality in algebra.
- Some laws of Boolean logic:
 - (Distributive) $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$
 - (Distributive) $P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$
 - (De Morgan's) $\neg (P \lor Q) \equiv \neg P \land \neg Q$
 - (De Morgan's) $\neg (P \land Q) \equiv \neg P \lor \neg Q$

3 Definitions, Theorems, and Proofs

Definitions, Theorems, and Proofs

- Definitions describe the objects and notions that we use. Precision is essential to any definition.
- After we have defined various objects and notions, we usually make *mathematical statements* about them. Again, the statements must be precise.
- A *proof* is a convincing logical argument that a statement is true. The only way to determine the truth or falsity of a mathematical statement is with a mathematical proof.
- A theorem is a mathematical statement proven true. Lemmas are proven statements for assisting the proof of another more significant statement.
- Corollaries are statements seen to follow easily from other proven ones.

Finding Proofs

- Find proofs isn't always easy; no one has a recipe for it.
- Below are some helpful general strategies:
 - 1. Carefully read the statement you want to prove.
 - 2. Rewrite the statement in your own words.
 - 3. Break it down and consider each part separately. For example, $P \iff Q$ consists of two parts: $P \to Q$ (the forward direction) and $Q \to P$ (the reverse direction).
 - 4. Try to get an intuitive feeling of why it should be true.

Tips for Producing a Proof

- A well-written proof is a sequence of statements, wherein each one follows by simple reasoning from previous statements in the sequence.
- Tips for producing a proof:
 - Be patient. Finding proofs takes time.
 - Come back to it. Look over the statement, think about it, leave it, and then return some time later.
 - Be neat. Use simple, clear text and/or pictures; make it easy for others to understand.
 - Be concise. Emphasize high-level ideas, but be sure to include enough details of reasoning.

An Example Proof

Theorem 1. For any two sets A and B, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof. We show that every element of $\overline{A \cup B}$ is also an element of $\overline{A} \cap \overline{B}$ and vice versa.

```
Forward (x \in \overline{A \cup B} \to x \in \overline{A} \cap \overline{B}):

x \in \overline{A \cup B} , def. of complement

\to x \notin A \cup B , def. of union

\to x \notin \overline{A} and x \notin \overline{B} , def. of complement

\to x \in \overline{A} \cap \overline{B} , def. of intersection

Reverse (x \in \overline{A} \cap \overline{B} \to x \in \overline{A \cup B}): ...
```

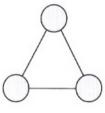
Another Example Proof

Theorem 2. In any graph G, the sum of the degrees of the nodes of G is an even number.

Proof.

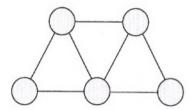
- \bullet Every edge in G connects two nodes, contributing 1 to the degree of each.
- Therefore, each edge contributes 2 to the sum of the degrees of all the nodes.
- If G has e edges, then the sum of the degrees of the nodes of G is 2e, which is even.

Another Example Proof (cont.)



$$sum = 2+2+2$$

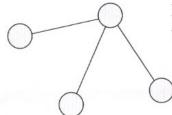
= 6



$$sum = 2+3+4+3+2 \\
= 14$$

Source: [Sipser 2006]

Another Example Proof (cont.)



Every time an edge is added, the sum increases by 2.

Source: [Sipser 2006]

4 Types of Proof

Types of Proof

- *Proof by construction*: prove that a particular type of object exists, by showing how to construct the object.
- *Proof by contradiction*: prove a statement by first assuming that the statement is false and then showing that the assumption leads to an obviously false consequence, called a contradiction.
- *Proof by induction*: prove that all elements of an infinite set have a specified property, by exploiting the inductive structure of the set.

Proof by Construction

Theorem 3. For each even number n greater than 2, there exists a 3-regular graph with n nodes.

Proof. Construct a graph G = (V, E) with $n (= 2k \ge 2)$ nodes as follows.

Let V be $\{0, 1, \dots, n-1\}$ and E be defined as

$$\begin{array}{rl} E &=& \{\{i,i+1\} \mid \text{for } 0 \leq i \leq n-2\} \ \cup \\ && \{\{n-1,0\}\} \ \cup \\ && \{\{i,i+n/2\} \mid \text{for } 0 \leq i \leq n/2-1\}. \end{array}$$

Proof by Contradiction

Theorem 4. $\sqrt{2}$ is irrational.

Proof. Assume toward a contradiction that $\sqrt{2}$ is rational, i.e., $\sqrt{2} = \frac{m}{n}$ for some integers m and n, which cannot both be even.

```
\begin{array}{lll} \sqrt{2} = \frac{m}{n} & \text{, from the assumption} \\ n\sqrt{2} = m & \text{, multipl. both sides by } n \\ 2n^2 = m^2 & \text{, square both sides} \\ m \text{ is even} & \text{, } m^2 \text{ is even} \\ 2n^2 = (2k)^2 = 4k^2 & \text{, from the above two} \\ n^2 = 2k^2 & \text{, divide both sides by } 2 \\ n \text{ is even} & \text{, } n^2 \text{ is even} \end{array}
```

Now both m and n are even, a contradiction.

Example: Home Mortgages

P: the principle (amount of the original loan).

I: the yearly interest rate.

Y: the monthly payment.

M: the monthly multiplier = 1 + I/12.

 P_t : the amount of loan outstanding after the t-th month; $P_0 = P$ and $P_{k+1} = P_k M - Y$.

Theorem 5. For each $t \geq 0$,

$$P_t = PM^t - Y(\frac{M^t - 1}{M - 1}).$$

Proof by Induction

Theorem 6. For each $t \geq 0$,

$$P_t = PM^t - Y(\frac{M^t - 1}{M - 1}).$$

Proof. The proof is by induction on t.

• Basis: When t = 0, $PM^0 - Y(\frac{M^0 - 1}{M - 1}) = P = P_0$.

Proof by Induction (cont.)

• Induction step: When t = k + 1 $(k \ge 0)$,

$$P_{k+1}$$
= {definition of P_t }
$$P_k M - Y$$
= {the induction hypothesis}
$$(PM^k - Y(\frac{M^k - 1}{M - 1}))M - Y$$
= {distribute M and rewrite Y }
$$PM^{k+1} - Y(\frac{M^{k+1} - M}{M - 1}) - Y(\frac{M - 1}{M - 1})$$
= {combine the last two terms}
$$PM^{k+1} - Y(\frac{M^{k+1} - 1}{M - 1})$$