
Turing Machines
(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 1 / 38

Turing Machines

Finite and pushdown automata are too restricted to serve as
models of general-purpose computers.

A Turing machine is similar to a finite automaton but with an
unlimited and unrestricted memory—an infinite tape. It has a
tape head that can read and write symbols and move around on
the tape.

A Turing machine can do everything that a real computer (as we
know it) can do.

Nonetheless, there are problems that no Turing machines, and
hence no real computers, can solve.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 2 / 38

Turing Machines (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 3 / 38

An Example Turing Machine

Let B = {w#w | w ∈ {0, 1}∗}. A Turing machine M1 for B may
work as follows:

1. Scan the input to be sure that it contains a single # symbol. If
not, reject.

2. Zig-zag across the tape to corresponding positions on either side
of the # symbol to check whether these positions contain the
same symbol. If they do not, reject.
Cross off symbols as they are checked.

3. When all symbols to the left of # have been crossed off, check
for any remaining symbols to the right of the #. If any symbols
remain, reject; otherwise, accept.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 4 / 38

An Example Turing Machine (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 5 / 38

Formal Definition of a TM

Definition (3.3)

A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept, qreject), where
Q, Σ, and Γ are all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet, where the blank symbol 6∈ Σ,

3. Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ,

4. δ : Q × Γ −→ Q × Γ× {L,R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 6 / 38

Configurations of a TM

As a TM computes, changes occur in

1. the current state,
2. the current tape contents, and
3. the current head location.

A setting of these three items is called a configuration of the
TM.

We write uqv to denote the configuration where

1. the current state is q,
2. the current tape contents is uv , and
3. the current head location is the first symbol of v .

(The tape contains only blanks following the last symbol of v .)

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 7 / 38

Configurations of a TM (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 8 / 38

Configurations of a TM (cont.)

q0w is the start configuration on input w .

uqacceptv is an accepting configuration.

uqrejectv is a rejecting configuration.

Accepting and rejecting configurations are halting configurations.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 9 / 38

Computation of a TM

Configuration C1 yields configuration C2 if the Turing machine can
legally go from C1 to C2 in a single step:

1. uaqibv yields uqjacv if δ(qi , b) = (qj , c , L).

2. uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R).

3. qibv yields qjcv if δ(qi , b) = (qj , c , L).

4. qibv yields cqjv if δ(qi , b) = (qj , c ,R).

(uaqi is considered equivalent to uaqi .)

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 10 / 38

Computation of a TM (cont.)

A Turing machine accepts input w if a sequence of
configurations C1,C2, . . . ,Ck exists where

1. C1 the start configuration on w ,
2. Ci yields Ci+1, and
3. Ck is an accepting configuration.

The collection of strings that M accepts is the language of M ,
or the language recognized by M , denoted L(M).

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 11 / 38

Decidable Languages

Definition (3.5)

A language is Turing-recognizable (also called recursively
enumerable) if some Turing machine recognizes it.

A Turing machine can fail to accept an input by entering the
qreject state and rejecting, or by looping (not halting).

A machine is called a decider if it halts on all inputs. A decider
that recognizes some language is said to decide the language.

Definition (3.6)

A language is Turing-decidable, or simply decidable (also called
recursive), if some Turing machine decides it.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 12 / 38

Example Turing Machines

A = {02n | n ≥ 0}. A decider M2 for A can be defined to work as
follows:

1. Sweep left to right across the tape, crossing off every second 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the tape contained more than one 0 and the
number of 0s was odd, reject.

4. Return head to the left-hand end of the tape.

5. Go to stage 1.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 13 / 38

Example Turing Machines (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 14 / 38

Example Turing Machines (cont.)

B = {w#w | w ∈ {0, 1}∗}. A decider M1 for B can be defined to
work as follows:

1. Scan the input to be sure that it contains a single # symbol. If
not, reject.

2. Zig-zag across the tape to corresponding positions on either side
of the # symbol to check whether these positions contain the
same symbol. If they do not, reject.
Cross off symbols as they are checked.

3. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 15 / 38

Example Turing Machines (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 16 / 38

Example Turing Machines (cont.)

C = {aibjck | i × j = k and i , j , k ≥ 1}. A decider M3 for C :

1. Scan the input to be sure that it is a member of aa∗bb∗cc∗ and
reject if it isn’t.

2. Return the head to the left-hand end of the tape.

3. Cross off an a and scan to the right until a b occurs. Shuttle
between the b’s and c ’s, crossing off one of each until all b’s are
gone.

4. Restore the crossed off b’s and repeat Stage 3 if there is another
a to cross off.

5. If all a’s and c ’s are crossed off, accept; otherwise, reject.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 17 / 38

Example Turing Machines (cont.)

E = {#x1#x2# · · ·#xl | xi ∈ {0, 1}∗ and xi 6= xj (fori 6= j)}.
1. Place a mark on top of the leftmost tape symbol. If that symbol

was not a #, reject.

2. Scan right to the next # and place a second mark on top of it.
If no # occurs before a blank, accept.

3. Compare, by zig-zagging, the two strings to the right of the
marked #’s. If they are equal, reject.

4. Move the second mark to the next # symbol. If not doable,
move the first mark to the next # to its right and the second
mark to the # after that. If not doable, accept.

5. Go to Stage 3.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 18 / 38

Variants of Turing Machines

Alternative definitions of Turing machines abound, including
versions with multiple tapes or with nondeterminism. They are
called variants of the Turing machine model.

The original model and its reasonable variants all have the same
power—they recognize the same class of languages.

To show that two models are equivalent, we simply need to show
that we can simulate one by the other.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 19 / 38

Multitape Turing Machines

A multitape Turing machine is like an ordinary Turing machine
with several tapes.

Each tape has its own head for reading and writing. Initially the
input appears on tape 1 and the others start out blank.

The transition function is changed to allow for reading, writing,
and moving the heads on all the tapes simultaneously. Formally,

δ : Q × Γk −→ Q × Γk × {L,R , S}k ,

where k is the number of tapes.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 20 / 38

Multitape Turing Machines (cont.)

Theorem (3.13)

Every multitape Turing machine has an equivalent single-tape Turing
machine.

A single tape TM S can simulate a k-tape M :

1. S “formats” its tape to represent all k tapes of M :

#
•
w1 w2 · · ·wn# • # • # · · ·#

2. To simulate a single move of M , S scans its tape to determine
the symbols under the virtual heads. Then S makes a second
pass to update the tapes according to M ’s transition function.

3. Whenever a virtual head is moved to the right onto a #, S
writes a blank symbol on this tape cell and shifts the tape
contents from this cell one unit to the right.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 21 / 38

Multitape Turing Machines (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 22 / 38

Nondeterministic Turing Machines

A nondeterministic Turing machine is defined in the
expected way.

The transition function of a nondeterministic TM has the form

δ : Q × Γ −→ P(Q × Γ× {L,R}).

The computation of a nondeterministic TM is a tree whose
branches correspond to different possibilities for the machine.

If some branch of the computation leads to the accept state, the
machine accepts its input.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 23 / 38

Nondeterministic Turing Machines (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 24 / 38

Nondeterministic Turing Machines (cont.)

Theorem (3.16)

Every nondeterministic TM has an equivalent deterministic TM.

The idea is to have a deterministic TM D try all possible
branches of the given nondeterministic TM N ’s computation.

D searches, in a breadth first manner, N ’s computation tree for
an accepting configuration.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 25 / 38

Nondeterministic Turing Machines (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 26 / 38

Nondeterministic Turing Machines (cont.)

D has three tapes:

Tape 1 always contains the input string and is never altered.

Tape 2 maintains a copy of N ’s tape on some branch of its
nondeterministic computation.

Tape 3 keeps track of D’s location in N ’s nondeterministic
computation tree.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 27 / 38

Enumerators

Some people use the term recursively enumerable language
for Turing-recognizable language.

An enumerator is a Turing machine with an attached printer.
Every time the Turing machine wants to add a string to the
output list, it sends the string to the printer.

The language enumerated by an enumerator E is the collection
of all the strings that E eventually prints out.

Moreover, E may generate the strings of the language in any
order, possibly with repetitions.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 28 / 38

Enumerators (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 29 / 38

Enumerators (cont.)

Theorem (3.21)

A language is Turing-recognizable if and only if some enumerator
enumerates it.

To recognize the language enumerated by E , a TM M works as
follows:

1. Run E . Every time that E outputs a string, compare it with the
input w .

2. If w appears in the output of E , accept.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 30 / 38

Enumerators (cont.)

To enumerate the language recognized by M , an enumerator E works
as follows:

1. Repeat Steps 2 and 3 for i = 1, 2, 3, . . .

2. Run M for i steps on each input, s1, s2, . . ., si .

3. If any computations accept, print out the corresponding sj .

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 31 / 38

Hilbert’s Tenth Problem

A polynomial is a sum of terms, where each term is a product of
variables and a constant.

For example, 6x3yz2 + 3xy 2 − x3 − 10 is a polynomial with four
terms over variables x , y , and z .

Let D = {p | p is a polynomial with an integral root}.
Hilbert’s tenth problem (rephrased): “Is there an algorithm for
determining D?”

Proving that no algorithm exists for a particular task requires a
precise definition of algorithm.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 32 / 38

Hilbert’s Tenth Problem: The Original Statement

10. Determination of the solvability of a Diophantine
equation. Given a diophantine equation with any number of
unknown quantities and with rational integral numerical coefficients:
To devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in
rational integers.

Note: The kind of process that Hilbert looked after is “effective
procedure” and is nowadays referred to as “computer algorithm” or
simply “algorithm.”

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 33 / 38

“Effective” Procedures

A procedure M is considered effective if the following hold:

1. M contains a finite number of exact instructions (each being
expressed with a finite number of symbols);

2. M will, if carried out without error, always produce the desired
result in a finite number of steps;

3. M can (in practice or in principle) be carried out by a human
being unaided by any machinery save paper and pencil;

4. M demands no insight or ingenuity on the part of the human
being carrying it out.

Note: excerpted from “The Church-Turing Thesis” of Stanford

Encyclopedia of Philosophy.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 34 / 38

The Definition of Algorithm

All models of a general-purpose computer turn out to be at best
equivalent in power to the Turing machine, as long as they
satisfy certain reasonable requirements.

This has an important philosophical corollary: Even though there
are many different computational models, the class of algorithms
that they describe is unique.

The Church-Turing thesis says that the intuitive notion of an
algorithm corresponds to the formal definition of a Turing
machine.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 35 / 38

Describing Turing Machines

Three possible levels of detail:

A formal description spells out in full the Turing machine’s
states, transition function, and so on.

In an implementation description, we use natural language prose
to describe the way that the Turing machine moves its head and
the way that it stores data on its tape.

In a high-level description, we use natural language prose to
describe an algorithm, ignoring the implementation model.

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 36 / 38

An Example High-Level Description

Let A = {〈G 〉 | G is a connected undirected graph}. The following is
a high-level description of a TM M that decides A:

M = “On input 〈G 〉, the encoding of a graph G :

1. Select the first node of G and mark it.

2. Repeat Step 3 until no new nodes are marked.

3. For each node in G , mark it if it is attached by an edge to a
node that is already marked.

4. Scan all the nodes of G to determine whether they all are
marked. If they are, accept; otherwise, reject.”

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 37 / 38

An Example High-Level Description (cont.)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Turing Machines Theory of Computing 2018 38 / 38

	Turing Machines
	Decidable Languages
	Variants of Turing Machines
	Multitape Turing Machines
	Nondeterministic Turing Machines
	Enumerators

	The Definition of Algorithm

