

Decidability (Based on [Sipser 2006,2013])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 1 / 27

3

Decidability/Solvability

- We shall demonstrate certain problems that can be solved algorithmically and others that cannot.
- Our objective is to explore the limits of algorithmic solvability.
- Why should you study unsolvability?
 - Knowing when a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.
 - A glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.

イロト 不得下 イヨト イヨト 二日

Decidable Languages/Problems

- $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}.$
- This is the acceptance problem (membership problem) for DFAs formulated as a language.

Theorem (4.1)

 $A_{\rm DFA}$ is a decidable language.

- $M = \text{``On input } \langle B, w \rangle$, where B is a DFA and w is a string:
 - 1. Simulate *B* on input *w*.
 - If the simulation ends in an accept state, *accept*; otherwise, *reject*."

Yih-Kuen Tsay (IM.NTU)

•
$$A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \}.$$

Theorem (4.2)

 $A_{\rm NFA}$ is a decidable language.

• $N = "On input \langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C.
- 2. Run TM *M* for deciding A_{DFA} (as a "procedure") on input $\langle C, w \rangle$.
- 3. If *M* accepts, *accept*; otherwise, *reject*."

Yih-Kuen Tsay (IM.NTU)

イロト 不得 トイヨト イヨト 二日

• $A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}.$

Theorem (4.3)

 $A_{\rm REX}$ is a decidable language.

• P = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:

- 1. Convert regular expression R to an equivalent DFA A.
- 2. Run TM *M* for deciding A_{DFA} on input $\langle A, w \rangle$.
- 3. If *M* accepts, *accept*; otherwise, *reject*."

Yih-Kuen Tsay (IM.NTU)

Decidability

•
$$E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

Theorem (4.4)

 $E_{\rm DFA}$ is a decidable language.

• T = "On input $\langle A \rangle$, where A is a DFA:

- 1. Mark the start state of A.
- 2. Repeat Step 3 until no new states get marked.
- 3. Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 6 / 27

•
$$EQ_{DFA} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

Theorem (4.5)

 $EQ_{\rm DFA}$ is a decidable language.

• F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- 1. Construct DFA $C = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 2. Run TM T for deciding E_{DFA} on input $\langle C \rangle$.
- 3. If T accepts, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 7 / 27

イロト 不得下 イヨト イヨト 二日

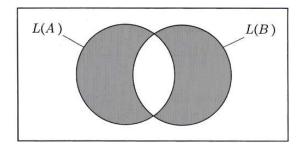


FIGURE 4.6 The symmetric difference of L(A) and L(B)

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 8 / 27

3

Decidable CFL Properties

•
$$A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}.$$

Theorem (4.7)

 $A_{\rm CFG}$ is a decidable language.

• S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2|w| 1 steps.
- If any of these derivations generate w, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

イロト 不得下 イヨト イヨト 二日

Decidable CFL Properties (cont.)

•
$$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}.$$

Theorem (4.8)

 $E_{\rm CFG}$ is a decidable language.

• R = "On input $\langle G \rangle$, where G is a CFG:

- 1. Mark all terminals in G.
- 2. Repeat Step 3 until no new variables get marked.
- 3. Mark any variable A where $A \rightarrow U_1 U_2 \cdots U_k$ is a rule in G and each symbol U_1, U_2, \cdots, U_k has already been marked.
- 4. If the start symbol is not marked, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

Decidability

Decidability of CFLs

Theorem (4.9)

Every context-free language is decidable.

- Let G be a CFG for the given language A and design a TM M_G that decides A.
- 📀 $M_G =$ "On input w:
 - 1. Run TM S for deciding A_{CFG} on input $\langle G, w \rangle$.
 - 2. If S accepts, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

Decidability

Classes of Languages

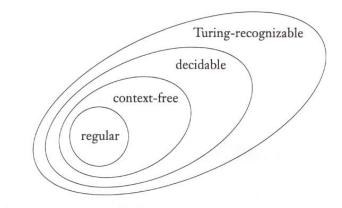


FIGURE 4.10

The relationship among classes of languages

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 12 / 27

3

(人間) トイヨト イヨト

Classes of Languages (cont.)

Chomsky	Grammar	Language	Computation
Hierarchy			Model
Type-0	Unrestricted	R.E.	Turing Machine
N/A	(no common name)	Recursive	Decider
Type-1	Context-Sensitive	Context-Sensitive	Linear Bounded
Type-2	Context-Free	Context-Free	Pushdown
Type-3	Regular	Regular	Finite

- Recall that Recursively Enumerable (R.E.) = Turing-recognizable and Recursive = Decidable (Turing-decidable).
- Linear Bounded Automata will be introduced later.

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 13 / 27

Undecidability

- We shall prove that there is a specific problem that is algorithmically unsolvable.
- This result demonstrates that computers are limited in a very fundamental way.
- Unsolvable problems are not necessarily esoteric. Some ordinary problems that people want to solve may turn out to be unsolvable.
- For example, the general problem of software verification is not solvable by computer.
- The specific problem that we will prove algorithmically unsolvable is the one of testing whether a Turing machine accepts a given input string.

イロト 不得下 イヨト イヨト 二日

The Acceptance Problem

• $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem (4.11)

 $A_{\rm TM}$ is undecidable.

- 😚 We will prove this fundamental result later.
- \bigcirc On the other hand, A_{TM} is Turing-recognizable.

The Acceptance Problem (cont.)

• $U = \text{``On input } \langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- If *M* ever enters its accept state, *accept*; if *M* ever enters its reject state, *reject*."
- If we had (actually not) some way to determine that M was not halting on w, then we could turn the recognizer U into a decider.

Note: The Turing machine U is an example of the *universal Turing machine*, as it is capable of simulating any other Turing machine from the description of that machin. The universal Turing machine inspired "stored-program" computers.

Countable vs. Uncountable Sets

Definition (4.12)

- Let f be a function from A to B.
 - We say that f is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
 - Say that f is onto if, for every $b \in B$, there is an $a \in A$ such that f(a) = b.
 - A function that is both one-to-one and onto is called a correspondence.
 - Two sets are considered to have the same size if there is a correspondence between them.

Definition (4.14)

A set A is **countable** if either it is finite or it has the same size as $\mathcal{N} = \{1, 2, 3, \dots\}$; it is **uncountable**, otherwise.

Yih-Kuen Tsay (IM.NTU)

Decidability

Countable vs. Uncountable Sets (cont.)

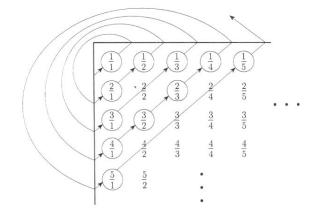


FIGURE **4.16** A correspondence of \mathcal{N} and \mathcal{Q}

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 18 / 27

3

- A real number is one that has a (possibly infinite) decimal representation.
 - $\ref{eq: 1.1}$ Let $\mathcal R$ be the set of real numbers.

Theorem (4.17)

 ${\mathcal R}$ is uncountable.

3

Uncountable Sets (cont.)

Assume that a correspondence f existed between \mathcal{N} and \mathcal{R} .

n	f(n)
1	3. <u>1</u> 4159 · · ·
2	55.5 <u>5</u> 555 · · ·
3	0.12 <u>3</u> 45 · · ·
4	0.500 <u>0</u> 0 · · ·
÷	:

- We can find an x, 0 < x < 1, so that the *i*-th digit following the decimal point of x is different from that of f(i); for example, x = 0.4641... is a possible choice.
- This proof technique is called *diagonalization*, discovered by Georg Cantor in 1873.

Yih-Kuen Tsay (IM.NTU)

Unrecognizability

Corollary (4.18)

Some languages are not Turing-recognizable.

- The set of all Turing machines is countable because each Turing machine *M* has an encoding into a string (*M*).
- \bigcirc Let $\mathcal L$ be the set of all languages over alphabet Σ .
- We can show that there is a correspondence between \mathcal{L} and the uncountable set \mathcal{B} of all infinite binary sequences.

$$\stackrel{\text{\tiny{\bullet}}}{=} \text{Let } \Sigma^* = \{s_1, s_2, s_3, \cdots\}.$$

Each language A ∈ L has a unique sequence in B, where the *i*-th bit is a 1 if and only if s_i ∈ A.

Yih-Kuen Tsay (IM.NTU)

Undecidability of the Acceptance Problem

igstarrow Suppose H is a decider for $A_{
m TM}$:

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

Solution
$$D =$$
 "On input $\langle M \rangle$, where M is a TM:

1. Run *H* on input $\langle M, \langle M \rangle \rangle$.

2. If *H* accepts, *reject* and if *H* rejects, *accept*."

• When D takes itself, namely $\langle D \rangle$, as input:

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

Yih-Kuen Tsay (IM.NTU)

(日) (同) (三) (三)

Undecidability of the Acceptance Problem (continuent)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept		accept		
M_2	accept	accept	accept	accept	
M_3 M_4	accept	accept			
÷					
•			:		

FIGURE 4.19

Entry *i*, *j* is accept if M_i accepts $\langle M_j \rangle$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 23 / 27

Undecidability of the Acceptance Problem (continuent)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
M_4	accept	accept	reject	reject	
:					
•			•		

FIGURE 4.20

Entry *i*, *j* is the value of *H* on input $\langle M_i, \langle M_j \rangle \rangle$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 24 / 27

Undecidability of the Acceptance Problem (continuent)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
÷			:		·	с. П	
D	reject	reject	accept	accept		?	
÷			:				·

FIGURE 4.21

If D is in the figure, a contradiction occurs at "?"

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Decidability

Theory of Computing 2018 25 / 27

A Turing-Unrecognizable Language

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem (4.22)

A language is decidable if and only if it is both Turing-recognizable and co-Turing-recognizable.

- Let M_1 be a recognizer for A and M_2 be a recognizer for \overline{A} . • M = ``On input w:
 - 1. Run both M_1 and M_2 on input w in parallel. (*M* takes turns simulating one step of each machine until one of them halts.)
 - 2. If M_1 accepts, *accept* and if M_2 accepts, *reject*."

Yih-Kuen Tsay (IM.NTU)

A Turing-Unrecognizable Language (cont.)

• $\overline{A_{\text{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \}.$

Corollary (4.23)

 $\overline{A_{\rm TM}}$ is not Turing-recognizable.

Yih-Kuen Tsay (IM.NTU)

Decidability