
Theory of Computing [Compiled on March 28, 2018] Spring 2018

Homework Assignment #3

Note

This assignment is due 2:10PM Wednesday, April 11, 2018. Please write or type your answers on
A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay’s mail box on
the first floor of Management College Building 2, or put it on the instructor’s desk before the class
on the due date starts. Late submission will be penalized by 20% for each working day overdue.
You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

(Note: problems marked with “Exercise X.XX” or “Problem X.XX” are taken from [Sipser 2013]
with probable adaptation.)

1. (Exercise 1.7; 10 points) Give state diagrams of NFAs with the specified number of states
recognizing each of the following languages. In all parts, the alphabet is {0, 1}.

(a) The language {w | w contains the substring 0101, i.e., w = x0101y for some x and y}
with five states

(b) The language 0∗1∗0+ with three states

2. (Exercise 1.14; 10 points) Show by giving an example that, if M is an NFA that recognizes
language C, swapping the accept and nonaccept states in M doesn’t necessarily yield a new
NFA that recognizes the complement of C. Is the class of languages recognized by NFAs
closed under complement? Explain you answer.

3. (Exercise 1.16; 20 points) Use the construction given in Theorem 1.39 (every NFA has an
equivalent DFA) to convert the following two nondeterministic finite automata to equivalent
deterministic finite automata.

1

2

b

a, ba

3

1 2

ε

b

b

a

a, b

(a) (b)

4. (Exercise 1.18; 10 points) Use the procedure described in Lemma 1.55 to convert the regular
expression (0 ∪ 1)∗011(0 ∪ 1)∗ to a nondeterministic finite automaton.

1



5. (Exercise 1.20; 10 points) Give regular expressions generating the following languages:

(a) {w | w contains the substring 0101, i.e., w = x0101y for some x and y}
(b) {w | w doesn’t contain the substring 011}

6. (Exercise 1.21; 20 points) Use the procedure described in Lemma 1.60 to convert the following
finite automata to regular expressions.

1

2

b

a

b

a

3

1 2
a, b

b

ab

a

(a) (b)

7. (Exercise 1.24; 10 points) A finite-state transducer (FST) is a type of deterministic finite
automaton whose output is a string rather than accept or reject. The following are state
diagrams of finite state transducers T1 and T2.

q1 q2

0/0
1/0

2/1

1/1
2/1

0/0

q1

q2q3

a/1

b/1 b/0

a/1

a/0

b/1

T1 T2

Each transition of an FST is labeled with two symbols, one designating the input symbol for
that transition and the other designating the output symbol. The two symbols are written
with a slash, /, separating them. In T1, the transition from q1 to q2 has input symbol
2 and output symbol 1. Some conditions may have multiple input-output pairs, such as
the transition in T1 from q1 to itself. When an FST computes on an input string w, it
takes the input symbols w1 · · ·wn one by one and, starting from the start state, follows the
transitions by matching the input labels with the sequence of symbols w1 · · ·wn = w. Every
time it goes along a transition, it outputs the corresponding output symbol. For example, on
input 2212011, machine T1 enters the sequence of states q1, q2, q2, q2, q2, q1, q1, q1 and produces
output 1111000. On input abbb, T2 outputs 1011. Give the sequence of states entered and
the output produced in each of the following parts.

2



(a) T1 on input 102021

(b) T2 on input baabba

8. (Exercise 1.25; 10 points) Read the informal definition of the finite state transducer given in
Exercise 1.24. Give a formal definition of this model, following the patterns in Definition 1.5
(Page 35). Assume that an FST has an input alphabet Σ and an output alphabet Γ but not
a set of accept states. Include a formal definition of the computation of an FST. (Hint: an
FST is a 5-tuple. Its transition function is of the form δ : Q× Σ −→ Q× Γ.)

3


