Theory of Computing 2020: Decidability

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 Introduction

Decidability/Solvability

- We shall demonstrate certain problems that can be solved algorithmically and others that cannot.
- Our objective is to explore the limits of algorithmic solvability.
- Why should you study unsolvability?
 - Knowing when a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.
 - A glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.

2 Decidable Languages

Decidable Languages/Problems

- $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}.$
- This is the *acceptance problem* (membership problem) for DFAs formulated as a language.

Theorem 1 (4.1). A_{DFA} is a decidable language.

- M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:
 - 1. Simulate B on input w.
 - 2. If the simulation ends in an accept state, *accept*; otherwise, reject."

Decidable Languages/Problems (cont.)

• $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \}.$

Theorem 2 (4.2). A_{NFA} is a decidable language.

- $N = \text{"On input } \langle B, w \rangle$, where B is an NFA and w is a string:
 - 1. Convert NFA B to an equivalent DFA C.
 - 2. Run TM M for deciding A_{DFA} (as a "procedure") on input $\langle C, w \rangle$.
 - 3. If *M* accepts, *accept*; otherwise, reject."

Decidable Languages/Problems (cont.)

• $A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}.$

Theorem 3 (4.3). A_{REX} is a decidable language.

- P = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:
 - 1. Convert regular expression R to an equivalent DFA A.
 - 2. Run TM M for deciding A_{DFA} on input $\langle A, w \rangle$.
 - 3. If *M* accepts, *accept*; otherwise, reject."

Decidable Languages/Problems (cont.)

• $E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$

Theorem 4 (4.4). E_{DFA} is a decidable language.

- T = "On input $\langle A \rangle$, where A is a DFA:
 - 1. Mark the start state of A.
 - 2. Repeat Step 3 until no new states get marked.
 - 3. Mark any state that has a transition coming into it from any state that is already marked.
 - 4. If no accept state is marked, *accept*; otherwise, reject."

Decidable Languages/Problems (cont.)

• $EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$

Theorem 5 (4.5). EQ_{DFA} is a decidable language.

- F = "On input $\langle A, B \rangle$, where A and B are DFAs:
 - 1. Construct DFA $C = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.
 - 2. Run TM T for deciding E_{DFA} on input $\langle C \rangle$.
 - 3. If T accepts, *accept*; otherwise, reject."

Decidable Languages/Problems (cont.)

FIGURE 4.6 The symmetric difference of L(A) and L(B)

Source: [Sipser 2006]

Decidable CFL Properties

• $A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}.$

Theorem 6 (4.7). A_{CFG} is a decidable language.

- S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:
 - 1. Convert G to an equivalent grammar in Chomsky normal form.
 - 2. List all derivations with 2|w| 1 steps.
 - 3. If any of these derivations generate w, *accept*; otherwise, reject."

Decidable CFL Properties (cont.)

• $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}.$

Theorem 7 (4.8). E_{CFG} is a decidable language.

- R = "On input $\langle G \rangle$, where G is a CFG:
 - 1. Mark all terminals in G.
 - 2. Repeat Step 3 until no new variables get marked.
 - 3. Mark any variable A where $A \to U_1 U_2 \cdots U_k$ is a rule in G and each symbol U_1, U_2, \cdots, U_k has already been marked.
 - 4. If the start symbol is not marked, *accept*; otherwise, reject."

Decidability of CFLs

Theorem 8 (4.9). Every context-free language is decidable.

- Let G be a CFG for the given language A and design a TM M_G that decides A.
- $M_G =$ "On input w:
 - 1. Run TM S for deciding A_{CFG} on input $\langle G, w \rangle$.
 - 2. If S accepts, *accept*; otherwise, reject."

Classes of Languages

FIGURE 4.10 The relationship among classes of languages

Source: [Sipser 2006]

Classes of Languages (cont.)

Chomsky Hierarchy	Grammar	Language	Computation Model
Type-0	Unrestricted	R.E.	Turing Machine
N/A	(no common name)	Recursive	Decider
Type-1	Context-Sensitive	Context-Sensitive	Linear Bounded
Type-2	Context-Free	Context-Free	Pushdown
Type-3	Regular	Regular	Finite

- Recall that Recursively Enumerable (R.E.) ≡ Turing-recognizable and Recursive ≡ Decidable (Turing-decidable).
- Linear Bounded Automata will be introduced later.

3 The Halting Problem

Undecidability

- We shall prove that there is a specific problem that is algorithmically unsolvable.
- This result demonstrates that computers are limited in a very fundamental way.
- Unsolvable problems are not necessarily esoteric. Some ordinary problems that people want to solve may turn out to be unsolvable.
- For example, the general problem of software verification is not solvable by computer.
- The specific problem that we will prove algorithmically unsolvable is the one of *testing whether a Turing machine accepts a given input string*.

The Acceptance Problem

• $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem 9 (4.11). A_{TM} is undecidable.

- We will prove this fundamental result later.
- On the other hand, $A_{\rm TM}$ is Turing-recognizable.

The Acceptance Problem (cont.)

- U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:
 - 1. Simulate M on input w.
 - 2. If M ever enters its accept state, *accept*; if M ever enters its reject state, reject."
- If we had (actually not) some way to determine that M was not *halting* on w, then we could turn the recognizer U into a decider.

Note: The Turing machine U is an example of the *universal Turing machine*, as it is capable of simulating any other Turing machine from the description of that machin. The universal Turing machine inspired "stored-program" computers.

Countable vs. Uncountable Sets

Definition 10 (4.12). Let f be a function from A to B.

- We say that f is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
- Say that f is onto if, for every $b \in B$, there is an $a \in A$ such that f(a) = b.
- A function that is both one-to-one and onto is called a *correspondence*.
- Two sets are considered to have the same size if there is a correspondence between them.

Definition 11 (4.14). A set A is **countable** if either it is finite or it has the same size as $\mathcal{N} = \{1, 2, 3, \dots\}$; it is **uncountable**, otherwise.

Countable vs. Uncountable Sets (cont.)

FIGURE **4.16** A correspondence of \mathcal{N} and \mathcal{Q}

Source: [Sipser 2006]

Uncountable Sets

- A real number is one that has a (possibly infinite) decimal representation.
- Let \mathcal{R} be the set of real numbers.

Theorem 12 (4.17). \mathcal{R} is uncountable.

Uncountable Sets (cont.)

• Assume that a correspondence f existed between \mathcal{N} and \mathcal{R} .

n	f(n)
1	$3.\underline{1}4159\cdots$
2	55.5555
3	$0.12\underline{3}45\cdots$
4	$0.500\underline{0}0\cdots$
÷	÷

- We can find an x, 0 < x < 1, so that the *i*-th digit following the decimal point of x is different from that of f(i); for example, $x = 0.4641 \cdots$ is a possible choice.
- This proof technique is called *diagonalization*, discovered by Georg Cantor in 1873.

Unrecognizability

Corollary 13 (4.18). Some languages are not Turing-recognizable.

- The set of all Turing machines is countable because each Turing machine M has an encoding into a string $\langle M \rangle$.
- Let \mathcal{L} be the set of all languages over alphabet Σ .
- We can show that there is a correspondence between \mathcal{L} and the uncountable set \mathcal{B} of all infinite binary sequences.
 - Let $\Sigma^* = \{s_1, s_2, s_3, \cdots\}.$
 - Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B} , where the *i*-th bit is a 1 if and only if $s_i \in A$.

Undecidability of the Acceptance Problem

• Suppose H is a decider for A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

- Let D = "On input $\langle M \rangle$, where M is a TM:
 - 1. Run H on input $\langle M, \langle M \rangle \rangle$.
 - 2. If *H* accepts, reject and if *H* rejects, *accept*."
- When D takes itself, namely $\langle D \rangle$, as input:

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

Undecidability of the Acceptance Problem (cont.)

FIGURE 4.19

Entry *i*, *j* is accept if M_i accepts $\langle M_j \rangle$

Source: [Sipser 2006]

Undecidability of the Acceptance Problem (cont.)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
M_4	accept	accept	reject	reject	
:					

FIGURE 4.20

Entry *i*, *j* is the value of *H* on input $\langle M_i, \langle M_j \rangle \rangle$

Source: [Sipser 2006]

Undecidability of the Acceptance Problem (cont.)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	\underline{accept}	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	\underline{reject}		accept	
÷			:		۰.	0	
D	reject	reject	accept	accept		_?	
÷			:				۰.

FIGURE 4.21

If *D* is in the figure, a contradiction occurs at "?"

Source: [Sipser 2006]

A Turing-Unrecognizable Language

• A language is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language.

Theorem 14 (4.22). A language is decidable if and only if it is both Turing-recognizable and co-Turing-recognizable.

- Let M_1 be a recognizer for A and M_2 be a recognizer for \overline{A} .
- M = "On input w:
 - 1. Run both M_1 and M_2 on input w in parallel. (*M* takes turns simulating one step of each machine until one of them halts.)
 - 2. If M_1 accepts, *accept* and if M_2 accepts, reject."

A Turing-Unrecognizable Language (cont.)

• $\overline{A_{\text{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \}.$

Corollary 15 (4.23). $\overline{A_{\rm TM}}$ is not Turing-recognizable.

- $A_{\rm TM}$ is Turing-recognizable, but not decidable.
- From Theorem 4.22, $A_{\rm TM}$ must not be co-Turing-recognizable.
- Therefore, $\overline{A_{\rm TM}}$ is not Turing-recognizable.