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1 Introduction

Decidability/Solvability

• We shall demonstrate certain problems that can be solved algorithmically and others that cannot.

• Our objective is to explore the limits of algorithmic solvability.

• Why should you study unsolvability?

– Knowing when a problem is algorithmically unsolvable is useful because then you realize that the
problem must be simplified or altered before you can find an algorithmic solution.

– A glimpse of the unsolvable can stimulate your imagination and help you gain an important
perspective on computation.

2 Decidable Languages

Decidable Languages/Problems

• ADFA = {〈B,w〉 | B is a DFA that accepts w}.

• This is the acceptance problem (membership problem) for DFAs formulated as a language.

Theorem 1 (4.1). ADFA is a decidable language.

• M = “On input 〈B,w〉, where B is a DFA and w is a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state, accept ; otherwise, reject.”

Decidable Languages/Problems (cont.)

• ANFA = {〈B,w〉 | B is an NFA that accepts w}.

Theorem 2 (4.2). ANFA is a decidable language.

• N = “On input 〈B,w〉, where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA C.

2. Run TM M for deciding ADFA (as a “procedure”) on input 〈C,w〉.
3. If M accepts, accept ; otherwise, reject.”
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Decidable Languages/Problems (cont.)

• AREX = {〈R,w〉 | R is a regular expression that generates w}.

Theorem 3 (4.3). AREX is a decidable language.

• P = “On input 〈R,w〉, where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent DFA A.

2. Run TM M for deciding ADFA on input 〈A,w〉.
3. If M accepts, accept ; otherwise, reject.”

Decidable Languages/Problems (cont.)

• EDFA = {〈A〉 | A is a DFA and L(A) = ∅}.

Theorem 4 (4.4). EDFA is a decidable language.

• T = “On input 〈A〉, where A is a DFA:

1. Mark the start state of A.

2. Repeat Step 3 until no new states get marked.

3. Mark any state that has a transition coming into it from any state that is already marked.

4. If no accept state is marked, accept ; otherwise, reject.”

Decidable Languages/Problems (cont.)

• EQDFA = { 〈A,B〉 | A and B are DFAs and L(A) = L(B) }.

Theorem 5 (4.5). EQDFA is a decidable language.

• F = “On input 〈A,B〉, where A and B are DFAs:

1. Construct DFA C = (A ∩B) ∪ (A ∩B).

2. Run TM T for deciding EDFA on input 〈C〉.
3. If T accepts, accept ; otherwise, reject.”

Decidable Languages/Problems (cont.)

Source: [Sipser 2006]
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Decidable CFL Properties

• ACFG = {〈G,w〉 | G is a CFG that generates w}.

Theorem 6 (4.7). ACFG is a decidable language.

• S = “On input 〈G,w〉, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with 2|w| − 1 steps.

3. If any of these derivations generate w, accept ; otherwise, reject.”

Decidable CFL Properties (cont.)

• ECFG = {〈G〉 | G is a CFG and L(G) = ∅}.

Theorem 7 (4.8). ECFG is a decidable language.

• R = “On input 〈G〉, where G is a CFG:

1. Mark all terminals in G.

2. Repeat Step 3 until no new variables get marked.

3. Mark any variable A where A → U1U2 · · ·Uk is a rule in G and each symbol U1, U2, · · · , Uk has
already been marked.

4. If the start symbol is not marked, accept ; otherwise, reject.”

Decidability of CFLs

Theorem 8 (4.9). Every context-free language is decidable.

• Let G be a CFG for the given language A and design a TM MG that decides A.

• MG = “On input w:

1. Run TM S for deciding ACFG on input 〈G,w〉.
2. If S accepts, accept ; otherwise, reject.”

Classes of Languages

Source: [Sipser 2006]
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Classes of Languages (cont.)

Chomsky Grammar Language Computation
Hierarchy Model

Type-0 Unrestricted R.E. Turing Machine
N/A (no common name) Recursive Decider
Type-1 Context-Sensitive Context-Sensitive Linear Bounded
Type-2 Context-Free Context-Free Pushdown
Type-3 Regular Regular Finite

• Recall that Recursively Enumerable (R.E.) ≡ Turing-recognizable and Recursive ≡ Decidable (Turing-
decidable).

• Linear Bounded Automata will be introduced later.

3 The Halting Problem

Undecidability

• We shall prove that there is a specific problem that is algorithmically unsolvable.

• This result demonstrates that computers are limited in a very fundamental way.

• Unsolvable problems are not necessarily esoteric. Some ordinary problems that people want to solve
may turn out to be unsolvable.

• For example, the general problem of software verification is not solvable by computer.

• The specific problem that we will prove algorithmically unsolvable is the one of testing whether a Turing
machine accepts a given input string .

The Acceptance Problem

• ATM = {〈M,w〉 |M is a TM and M accepts w}.

Theorem 9 (4.11). ATM is undecidable.

• We will prove this fundamental result later.

• On the other hand, ATM is Turing-recognizable.

The Acceptance Problem (cont.)

• U = “On input 〈M,w〉, where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept ; if M ever enters its reject state, reject.”

• If we had (actually not) some way to determine that M was not halting on w, then we could turn the
recognizer U into a decider.

Note: The Turing machine U is an example of the universal Turing machine, as it is capable of simulating
any other Turing machine from the description of that machin. The universal Turing machine inspired
“stored-program” computers.
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Countable vs. Uncountable Sets

Definition 10 (4.12). Let f be a function from A to B.

• We say that f is one-to-one if f(a) 6= f(b) whenever a 6= b.

• Say that f is onto if, for every b ∈ B, there is an a ∈ A such that f(a) = b.

• A function that is both one-to-one and onto is called a correspondence.

• Two sets are considered to have the same size if there is a correspondence between them.

Definition 11 (4.14). A set A is countable if either it is finite or it has the same size as N = {1, 2, 3, · · · };
it is uncountable, otherwise.

Countable vs. Uncountable Sets (cont.)

Source: [Sipser 2006]

Uncountable Sets

• A real number is one that has a (possibly infinite) decimal representation.

• Let R be the set of real numbers.

Theorem 12 (4.17). R is uncountable.

Uncountable Sets (cont.)

• Assume that a correspondence f existed between N and R.

n f(n)
1 3.14159 · · ·
2 55.55555 · · ·
3 0.12345 · · ·
4 0.50000 · · ·
...

...
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• We can find an x, 0 < x < 1, so that the i-th digit following the decimal point of x is different from
that of f(i); for example, x = 0.4641 · · · is a possible choice.

• This proof technique is called diagonalization, discovered by Georg Cantor in 1873.

Unrecognizability

Corollary 13 (4.18). Some languages are not Turing-recognizable.

• The set of all Turing machines is countable because each Turing machine M has an encoding into a
string 〈M〉.

• Let L be the set of all languages over alphabet Σ.

• We can show that there is a correspondence between L and the uncountable set B of all infinite binary
sequences.

– Let Σ∗ = {s1, s2, s3, · · · }.
– Each language A ∈ L has a unique sequence in B, where the i-th bit is a 1 if and only if si ∈ A.

Undecidability of the Acceptance Problem

• Suppose H is a decider for ATM:

H(〈M,w〉) =

{
accept if M accepts w
reject if M does not accept w

• Let D = “On input 〈M〉, where M is a TM:

1. Run H on input 〈M, 〈M〉〉.
2. If H accepts, reject and if H rejects, accept .”

• When D takes itself, namely 〈D〉, as input:

D(〈D〉) =

{
accept if D does not accept 〈D〉
reject if D accepts 〈D〉

Undecidability of the Acceptance Problem (cont.)

Source: [Sipser 2006]
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Undecidability of the Acceptance Problem (cont.)

Source: [Sipser 2006]

Undecidability of the Acceptance Problem (cont.)

Source: [Sipser 2006]

A Turing-Unrecognizable Language

• A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem 14 (4.22). A language is decidable if and only if it is both Turing-recognizable and co-Turing-
recognizable.

• Let M1 be a recognizer for A and M2 be a recognizer for A.

• M = “On input w:

1. Run both M1 and M2 on input w in parallel. (M takes turns simulating one step of each machine
until one of them halts.)

2. If M1 accepts, accept and if M2 accepts, reject.”
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A Turing-Unrecognizable Language (cont.)

• ATM = {〈M,w〉 |M is a TM and M does not accept w}.

Corollary 15 (4.23). ATM is not Turing-recognizable.

• ATM is Turing-recognizable, but not decidable.

• From Theorem 4.22, ATM must not be co-Turing-recognizable.

• Therefore, ATM is not Turing-recognizable.
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