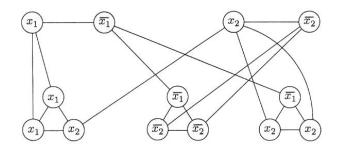
Theory of Computing 2020: More NP-Complete Problems

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

1 More NP-Complete Problems


The Vertex Cover Problem

- ullet A vertex cover of an undirected graph G is a subset of the nodes where every edge of G touches one of those nodes.
- $VERTEX_COVER = \{ \langle G, k \rangle \mid G \text{ is an undirected graph that has a } k\text{-node vertex cover} \}.$

Theorem 1. VERTEX_COVER is NP-complete.

• We show that $3SAT \leq_{\mathbf{P}} VERTEX_COVER$.

The Vertex Cover Problem (cont.)

FIGURE 7.45

The graph that the reduction produces from $\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$

Source: [Sipser 2006]

Note: Let k be m+2l, where m is the number of variables and l the number of clauses in ϕ .

The Hamiltonian Path Problem

Theorem 2. HAMPATH is NP-complete.

We show that $3SAT \leq_{\mathbf{P}} HAMPATH$.

The Hamiltonian Path Problem (cont.)

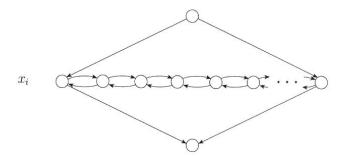


FIGURE **7.47** Representing the variable x_i as a diamond structure

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

FIGURE 7.48

Representing the clause c_j as a node

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

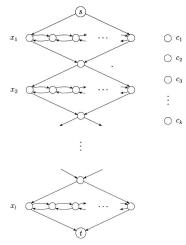


FIGURE **7.49**The high-level structure of *G*

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

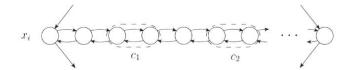


FIGURE **7.50**

The horizontal nodes in a diamond structure

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

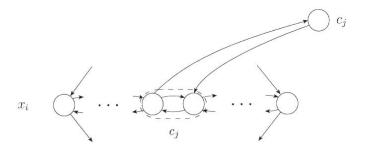


FIGURE **7.51**

The additional edges when clause c_j contains x_i

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

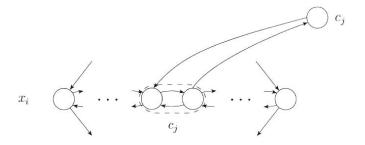
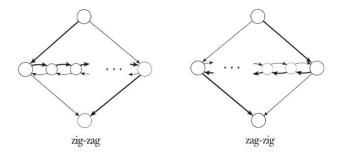



FIGURE **7.52**

The additional edges when clause c_i contains $\overline{x_i}$

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

FIGURE 7.53

Zig-zagging and zag-zigging through a diamond, as determined by the satisfying assignment

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

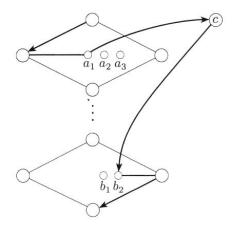


FIGURE **7.54**This situation cannot occur

Source: [Sipser 2006]

The Hamiltonian Path Problem (cont.)

• Let *UHAMPATH* be the undirected version of the Hamiltonian path problem *HAMPATH*.

Theorem 3. UHAMPATH is NP-complete.

- An input $\langle G, s, t \rangle$ for HAMPATH is mapped to $\langle G', s', t' \rangle$ for UHAMPATH as follows.
- Each node u of G, except for s and t, is replaced by a triple of nodes u^{in} , u^{mid} , and u^{out} in G'.
- Nodes s and t are replaced by node $s^{\text{out}} = s'$ and $t^{\text{in}} = t'$.
- Edges connect u^{mid} with u^{in} and u^{out} .
- An edge connects u^{out} and v^{in} if (u, v) is an edge of G.

The Subset Sum Problem

- $SUBSET_SUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\} \text{ and for some} \{y_1, \dots, y_l\} \subseteq S, \text{ we have } \sum y_i = t\}.$ Theorem 4. $SUBSET_SUM$ is NP-complete.
- We show that $3SAT \leq_{\mathbf{P}} SUBSET_SUM$.

The Subset Sum Problem (cont.)

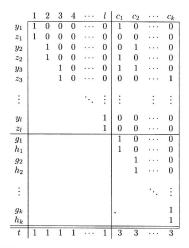


FIGURE **7.57**Reducing 3SAT to SUBSET-SUM

Source: [Sipser 2006]