

More NP-Complete Problems (Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

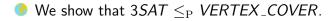
More NP-Complete Problems

Theory of Computing 2020 1 / 15

3

(日) (周) (三) (三)

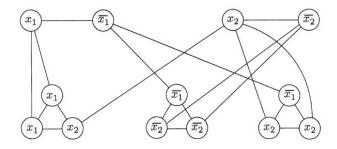
The Vertex Cover Problem



A vertex cover of an undirected graph G is a subset of the nodes where every edge of G touches one of those nodes.

VERTEX_COVER = { \langle G, k \rangle | G is an undirected graph that has a k-node vertex cover }.

Theorem


VERTEX_COVER is NP-complete.

イロト 人間ト イヨト イヨト

The Vertex Cover Problem (cont.)

FIGURE 7.45

The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

Source: [Sipser 2006]

Note: Let k be m + 2I, where m is the number of variables and I the number of clauses in ϕ .

Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

Theory of Computing 2020 3 / 15

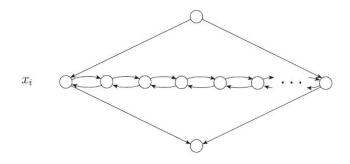
The Hamiltonian Path Problem

Theorem

HAMPATH is NP-complete.

We show that $3SAT \leq_{P} HAMPATH$.

Yih-Kuen Tsay (IM.NTU)


More NP-Complete Problems

Theory of Computing 2020 4 / 15

- 3

イロト イポト イヨト イヨト

FIGURE 7.47 Representing the variable x_i as a diamond structure

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

Theory of Computing 2020 5 / 15

- A TE N - A TE

FIGURE **7.48** Representing the clause c_j as a node

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

Theory of Computing 2020 6 / 15

(日) (周) (三) (三)

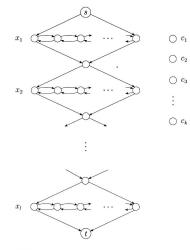
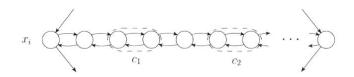
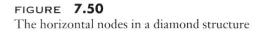


FIGURE **7.49** The high-level structure of *G*

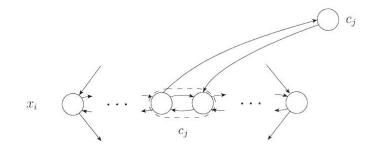

Source: [Sipser 2006]


Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ Q ○
Theory of Computing 2020 7 / 15

Source: [Sipser 2006]


Yih-Kuen Tsay (IM.NTU)

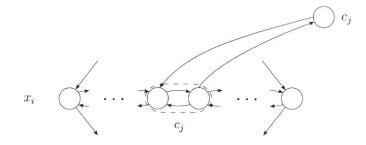
More NP-Complete Problems

Theory of Computing 2020 8 / 15

Image: A matrix

FIGURE 7.51 The additional edges when clause c_i contains x_i

Source: [Sipser 2006]


Yih-Kuen Tsay (IM.NTU)

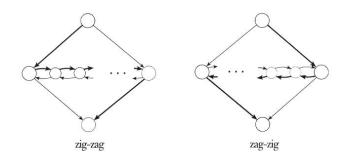
More NP-Complete Problems

Theory of Computing 2020 9 / 15

マヨト イモト イモト

FIGURE 7.52 The additional edges when clause c_i contains $\overline{x_i}$

Source: [Sipser 2006]


Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

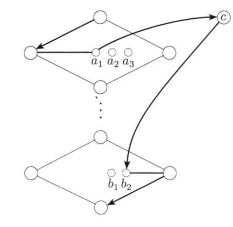
Theory of Computing 2020 10 / 15

A B F A B F

FIGURE **7.53**

Zig-zagging and zag-zigging through a diamond, as determined by the satisfying assignment

Source: [Sipser 2006]


Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

Theory of Computing 2020 11 / 15

- 4 同 6 4 日 6 4 日 6

FIGURE **7.54** This situation cannot occur

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

Theory of Computing 2020 12 / 15

3

イロト イポト イヨト イヨト

Let UHAMPATH be the undirected version of the Hamiltonian path problem HAMPATH.

Theorem

UHAMPATH is NP-complete.

- An input $\langle G, s, t \rangle$ for *HAMPATH* is mapped to $\langle G', s', t' \rangle$ for *UHAMPATH* as follows.
- The Each node u of G, except for s and t, is replaced by a triple of nodes u^{in} , u^{mid} , and u^{out} in G'.
- 😚 Nodes s and t are replaced by node $s^{\mathrm{out}} = s'$ and $t^{\mathrm{in}} = t'.$
- Edges connect u^{mid} with u^{in} and u^{out} .
- An edge connects u^{out} and v^{in} if (u, v) is an edge of G.

Yih-Kuen Tsay (IM.NTU)

The Subset Sum Problem

• SUBSET_SUM = {
$$\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
 and for some $\{y_1, \dots, y_l\} \subseteq S$, we have $\sum y_i = t$ }.

Theorem

SUBSET_SUM is NP-complete.

• We show that $3SAT \leq_{P} SUBSET_SUM$.

Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

Theory of Computing 2020 14 / 15

- 3

(日) (周) (三) (三)

The Subset Sum Problem (cont.)

	1	2	3	4	• • •	l	c_1	c_2		c_k
y_1	1	0	0	0		0	1	0		0
z_1	1	0	0	0	• • •	0	0	0		0
y_2		1	0	0		0	0	1		0
z_2		1	0	0		0	1	0		0
y_3			1	0		0	1	1	• • •	0
z_3			1	0	• • •	0	0	0	• • •	1
1					· · .	÷	÷		÷	
y_l						1	0	0		0
z_l						1	0	0		0
g_1							1	0	• • •	0
h_1							1	0		0
g_2								1		0
h_2								1		0
:									· · .	
g_k										1
h_k										1
t	1	1	1	1		1	3	3	• • •	3

FIGURE **7.57** Reducing *3SAT* to *SUBSET-SUM*

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

More NP-Complete Problems

Theory of Computing 2020 15 / 15

イロト 不得下 イヨト イヨト 二日