Homework Assignment \#4

Due Time/Date

This assignment is due 2:10PM Tuesday, April 7, 2020. Late submission will be penalized by 20% for each working day overdue.

How to Submit

Please use a word processor or scan hand-written answers to produce a single PDF file. Name your file according to this pattern: "b057050xx-hw4". Upload the PDF file to the Ceiba course site for Theory of Computing 2020: https://ceiba.ntu.edu.tw/1082theory2020. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

(Note: problems marked with "Exercise X.XX" or "Problem X.XX" are taken from [Sipser 2013] with probable adaptation.)

1. (Problem 1.32; 20 points) For languages A and B, let the shuffle of A and B be the language $\left\{w \mid w=a_{1} b_{1} \cdots a_{k} b_{k}\right.$, where $a_{1} \cdots a_{k} \in A$ and $b_{1} \cdots b_{k} \in B$, each $\left.a_{i}, b_{i} \in \Sigma^{*}\right\}$. Show that the class of regular languages is closed under shuffle.
2. (Problem 1.38; 20 points) Let

$$
\Sigma_{2}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} .
$$

Here, Σ_{2} contains all columns of 0 s and 1 s of length two. A string of symbols in Σ_{2} gives two rows of 0 s and 1 s . Consider each row to be a binary number and let

$$
C=\left\{w \in \Sigma_{2}^{*} \mid \text { the bottom row of } w \text { is three times the top row }\right\} .
$$

For example, $\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right] \in C$, but $\left[\begin{array}{l}0 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right] \notin C$. Show that C is regular. (You may assume the result claimed in Problem 5 of HW\#2.)
3. (Problem 1.40; 10 points) Let Σ_{2} be the same as in Problem 2. Consider the top and bottom rows to be strings of 0 s and 1 s and let

$$
E=\left\{w \in \Sigma_{2}^{*} \mid \text { the bottom row of } w \text { is the reverse of the top row of } w\right\} .
$$

Show that E is not regular.
4. (Problem 1.42; 20 points) Let $C_{n}=\{x \mid x$ is a binary number that is a multiple of $n\}$. Show that for each $n \geq 1$, the language C_{n} is regular.
5. (Problem 1.51; 10 points) Prove that the language $\left\{w \in\{0,1\}^{*} \mid w\right.$ is not a palindrome $\}$ is not regular. You may use the pumping lemma and the closedness of the class of regular languages under union, intersection, and complement. (Note: a palindrome is a string that reads the same forward and backward.)
6. (Problem 1.66; 20 points) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let h be a state of M called its "home". A synchronizing sequence for M and h is a string $s \in \Sigma^{*}$ where $\delta(q, s)=h$ for every $q \in Q$. Say that M is synchronizable if it has a synchronizing sequence for some state h. Prove that, if M is a k-state synchronizable DFA, then it has a synchronizing sequence of length at most k^{3}. (Note: $\delta(q, s)$ equals the state where M ends up, when M starts from state q and reads input s.)

