Suggested Solutions to Midterm Problems

1. Let L be a language over Σ (i.e., $L \subseteq \Sigma^{*}$). Two strings x and y in Σ^{*} are distinguishable by L if, for some string z in Σ^{*}, exactly one of $x z$ and $y z$ is in L. When no such z exists, i.e., for every z in Σ^{*}, either both of $x z$ and $y z$ or neither of them are in L, we say that x and y are indistinguishable by L. Is indistinguishability by a language an equivalence relation (over Σ^{*})? Please justify your answer.

Solution. Let us refer to the "indistinguishability by a language L " relation as $R_{L} . R_{L}$ is an equivalence relation, as it satisfies the following three conditions:

- Reflexivity (for every x in $\Sigma^{*}, x R_{L} x$): For every w in $\Sigma^{*}, x w$ and $x w$ are identical and either both or neither of them are in L. Hence, $x R_{L} x$.
- Symmetry (for every x and y in $\Sigma^{*}, x R_{L} y$ if and only if $y R_{L} x$): If $x R_{L} y$, i.e., for every w in Σ^{*}, either both of $x w$ and $y w$ or neither of them are in L, then, for every w in Σ^{*}, both of $y w$ and $x w$ or neither of them are in L and hence $y R_{L} x$; and vice versa.
- Transitivity (for every x, y, and z in $\Sigma^{*}, x R_{L} y$ and $y R_{L} z$ implies $x R_{L} z$): Suppose $x R_{L} y$ and $y R_{L} z$, i.e., for every w in Σ^{*}, (a) either both of $x w$ and $y w$ or neither of them are in L and (b) either both of $y w$ and $z w$ or neither of them are in L. If both of $x w$ and $y w$ are in L, then both of $y w$ and $z w$ are also in L and hence both of $x w$ and $z w$ are in L. If neither of $x w$ and $y w$ are in L, then neither of $y w$ and $z w$ are in L and hence neither of $x w$ and $z w$ are in L. So, for every w in Σ^{*}, either both of $x w$ and $z w$ or neither of them are in L and hence $x R_{L} z$.

2. Give the state diagrams of DFAs, with as few states as possible, recognizing the following languages.
(a) $\left\{w \in\{0,1\}^{*} \mid w\right.$ begins with a 1 and also ends with a 1$\}$.

Solution.

(b) $\left\{w \in\{0,1\}^{*} \mid w\right.$ doesn't contain the substring 101$\}$.

Solution.

3. Let $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 101 as a substring or ends with a 1$\}$.
(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes L. The fewer states your NFA has, the more points you will be credited for this problem.
Solution.

(b) Give a regular expression that describes L. The shorter your regular expression is, the more points you will be credited for this problem.
Solution. $(0 \cup 1)^{*} 1\left(01(0 \cup 1)^{*} \cup \epsilon\right)$ or $\Sigma^{*} 1\left(01 \Sigma^{*} \cup \epsilon\right)$, where Σ is a shorthand for $(0 \cup 1)$.
4. For languages A and B, let the shuffle of A and B be the language $\left\{w \mid w=a_{1} b_{1} \cdots a_{k} b_{k}\right.$, where $a_{1} \cdots a_{k} \in A$ and $b_{1} \cdots b_{k} \in B$, each $\left.a_{i}, b_{i} \in \Sigma^{*}\right\}$. Show that the class of regular languages is closed under shuffle.

Solution. Let $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ and $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right)$ be two DFAs that recognize A and B, respectively. An NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that, in each step, simulates either a step of M_{A} or M_{B} will recognize the shuffle of A and B. Formally, it is defined as follows:

- $Q=Q_{A} \times Q_{B}$,
- $\delta((x, y), a)=\left\{\left(\delta_{A}(x, a), y\right),\left(x, \delta_{B}(y, a)\right)\right\}$ for every $x \in Q_{A}, y \in Q_{B}, a \in \Sigma$,
- $q_{0}=\left(q_{A}, q_{B}\right)$,
- $F=F_{A} \times F_{B}$.

5. Consider the following CFG discussed in class, where for convenience the variables have been renamed with single letters.

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

(a) (10 points) Give the (leftmost) derivation and parse tree for the string $(a+a) \times(a)$. Solution.

The leftmost derivation
The parse tree

$$
\begin{aligned}
E & \Rightarrow T \\
& \Rightarrow T \times F \\
& \Rightarrow F \times F \\
& \Rightarrow(E) \times F \\
& \Rightarrow(E+T) \times F \\
& \Rightarrow(T+T) \times F \\
& \Rightarrow(F+T) \times F \\
& \Rightarrow(a+T) \times F \\
& \Rightarrow(a+F) \times F \\
& \Rightarrow(a+a) \times F \\
& \Rightarrow(a+a) \times(T) \\
& \Rightarrow(a+a) \times(F) \\
& \Rightarrow(a+a) \times(a)
\end{aligned}
$$

(b) (10 points) Convert the grammar into an equivalent PDA (that recognize the same language).

Solution.

6. Draw the state diagram of a PDA that recognizes the following language: $\left\{w \in\{0,1\}^{*} \mid\right.$ w has twice as many 1 s as 0 s$\}$. Please make the PDA as simple and deterministic as possible and explain the intuition behind the PDA.

Solution. A PDA that recognizes the language is shown below. The basic idea is to cancel out every two 1 s by a subsequent 0 or the other way around, using the stack to remember outstanding (yet-to-be-cancelled-out) occurrences of 0 or 1 . The case when a 0 is read with a 1 outstanding on the stack is effectively the same as a 0 immediately followed by a 1 , leaving a 0 on the stack to be cancelled out by a subsequent 1 . So, when reading a 1 , the PDA pushes a 1 onto the stack or pops a 0 from the stack. When reading a 0 , the PDA pushes two 0s onto the stack, pops two 1s from the stack, or (to allow the case when a 0 is read with a 1 outstanding on the stack) pops a 1 from and pushes a 0 onto the stack.

The PDA above is simple enough, but highly nondeterministic. For instance, while there is an outstanding 0 on the stack, the PDA may choose to push a 1 (rather than correctly cancelling out the 0) when reading a 1 , even though this choice will turn out to be futile. The following is a more deterministic PDA for the same language.

7. Prove each of the following statements:
(a) (2 points) The class of context-free languages is closed under union.

Solution. Let A and B be two context-free languages. Suppose they may be generated by CFGs $\left(V_{A}, \Sigma, R_{A}, S_{A}\right)$ and $\left(V_{B}, \Sigma, R_{B}, S_{B}\right)$ respectively, where V_{A} and V_{B} are disjoint. Then, $\left(V_{A} \cup V_{B}, \Sigma,\left\{S \rightarrow S_{A} \mid S_{B}\right\} \cup R_{A} \cup R_{B}, S\right)$ will be a CFG that generates $L(A) \cup L(B)$.
(b) (4 points) The class of context-free languages is not closed under intersection.

Solution. Let $A=\left\{a^{n} b^{n} c^{m} \mid n, m \geq 0\right\}$ and $B=\left\{a^{m} b^{n} c^{n} \mid n, m \geq 0\right\}$, which are context free. $A \cap B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context free.
(c) (4 points) The class of context-free languages is not closed under complement.

Solution. Intersection may be expressed in terms of complement and union: $A \cap B=$ $\overline{\bar{A}} \cup \bar{B}$. From (a) and (b), the class of context-free languages is closed under the union operation, but it is not closed under the intersection operation. If the class of context-free languages were closed under the complement operation, then it would be closed under intersection, contradicting the result in (b).
8. Let A be the language of all palindromes over $\{0,1\}$ with equal numbers of 0 s and 1 s . Prove, using the pumping lemma, that A is not context free. (Note: a palindrome is a string that reads the same forward and backward.)

Solution. We take s to be $1^{p} 0^{p} 0^{p} 1^{p}$, where p is the pumping length, and show that s cannot be pumped. There are basically three ways to divide s into $u v x y z$ such that $|v y|>0$ and $|v x y| \leq p:$

Case 1: vxy falls (entirely) within the first occurrence of $1^{p} 0^{p}$. No matter what strings v and y get from the division, when we pump down (i.e., $i=0$), we will lose some 1 s or 0 s (or both) in the resulting string s^{\prime}. If we lose some 1 s , then there will not be a sufficient number of 1 s to match the 1^{p} in the suffix $0^{p} 1^{p}$ and s^{\prime} is on longer a palindrome. If all 1 s remain, then we must lose some 0 s and there will be fewer 0 s than 1 s in s^{\prime}.

Case 2: vxy falls within the substring $0^{p} 0^{p}$. No matter what strings v and y get from the division, when we pump down (i.e., $i=0$), there will be fewer 0 s than 1 s in the resulting string.

Case 3: vxy falls within the second occurrence of $0^{p} 1^{p}$. This is analogous to Case 1.
9. Find a regular language A, a non-regular but context-free language B, and a non-contextfree language C over $\{0,1\}$ such that $C \subseteq B \subseteq A$.

Solution. $A=\left\{0^{i} 1^{j} 0^{k} \mid i, j, k \geq 0\right\}$ is regular. $B=\left\{0^{i} 1^{j} 0^{k} \mid i, j, k \geq 0\right.$ and $\left.i \leq j\right\}$ is context-free but not regular. $C=\left\{0^{i} 1^{j} 0^{k} \mid i, j, k \geq 0\right.$ and $\left.i \leq j \leq k\right\}$ is not context-free. It is apparent that $C \subseteq B \subseteq A$.

Appendix

- (Pumping Lemma for Context-Free Languages)

If A is a context-free language, then there is a number p such that, if s is a string in A and $|s| \geq p$, then s may be divided into five pieces, $s=u v x y z$, satisfying the conditions:

1. for each $i \geq 0, u v^{i} x y^{i} z \in A$,
2. $|v y|>0$, and
3. $|v x y| \leq p$.
