

1 / 54

Time Complexity and NP-Completeness (Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

► < □ ► < ≡ ► < ≡ ►</p>
Theory of Computing 2021

Time Complexity

- Decidability of a problem merely indicates that the problem is computationally solvable *in principle*.
- It may not be solvable in practice if the solution requires an inordinate amount of time or memory.
- We shall introduce a way of measuring the time used to solve a problem.
- We then show how to classify problems according to the amount of time required.

Measuring Time Complexity

• Let
$$A = \{0^k 1^k \mid k \ge 0\}$$
.

- How much time does a single-tape TM need to decide A?
- 😚 A single-tape TM M_1 for A works as follows:
 - 1. Scan across the tape and *reject* if a 0 appears to the right of a 1.
 - 2. Repeat Stage 3 if both 0s and 1s remain on the tape.
 - 3. Scan across the tape, crossing off a single 0 and a single 1.
 - 4. If no 0s or 1s remain on the tape, *accept*; otherwise, *reject*.

3 / 54

イロト 不得下 イヨト イヨト

Measuring Time Complexity

• Let
$$A = \{0^k 1^k \mid k \ge 0\}$$
.

How much time does a single-tape TM need to decide A?

- 😚 A single-tape TM M_1 for A works as follows:
 - 1. Scan across the tape and *reject* if a 0 appears to the right of a 1.
 - 2. Repeat Stage 3 if both 0s and 1s remain on the tape.
 - 3. Scan across the tape, crossing off a single 0 and a single 1.
 - 4. If no 0s or 1s remain on the tape, *accept*; otherwise, *reject*.
- Intuitively, the running time of the Turing machine will be longer when the input is longer.

3 / 54

イロト イポト イヨト イヨト

Measuring Time Complexity (cont.)

We shall compute the running time of an algorithm purely as a function of the length of the string representing the input.

Definition (7.1)

Let *M* be a deterministic TM that halts on all inputs. The **running time** or **time complexity** of *M* is the function $f : \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the *maximum* number of steps that *M* uses on any input of length *n*. If f(n) is the running time of *M*, we say that *M* runs in time f(n) or that *M* is an f(n) time Turing machine.

イロト 不得 トイヨト イヨト 二日

Measuring Time Complexity (cont.)

4 / 54

We shall compute the running time of an algorithm purely as a function of the length of the string representing the input.

Definition (7.1)

Let *M* be a deterministic TM that halts on all inputs. The **running time** or **time complexity** of *M* is the function $f : \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the *maximum* number of steps that *M* uses on any input of length *n*. If f(n) is the running time of *M*, we say that *M* runs in time f(n) or that *M* is an f(n) time Turing machine.

We will mostly focus on worst-case analysis, measuring the longest running time of all inputs of a particular length.

Yih-Kuen Tsay (IM.NTU)

Asymptotic Analysis

- The exact running time of an algorithm is a complex expression.
- We seek to understand the running time of the algorithm when it is run on large inputs.
- We do so by considering only the highest-order term of the expression of its running time (discarding the coefficient of that term and any lower-order terms).
- For example, if $f(n) = 6n^3 + 2n^2 + 20n + 45$, we say that f is *asymptotically* at most n^3 .
- The asymptotic notation, or big-O notation, for describing this relationship is $f(n) = O(n^3)$.

イロト イポト イヨト イヨト 二日

Asymptotic Bounds

😚 Let \mathcal{R}^+ be the set of positive real numbers.

Definition (7.2)

Let f and g be two functions $f, g : \mathcal{N} \longrightarrow \mathcal{R}^+$. We say that f(n) = O(g(n)) if positive integers c and n_0 exist so that, for every integer $n \ge n_0$,

 $f(n) \leq cg(n).$

When f(n) = O(g(n)), we say that g(n) is an (asymptotic) upper bound for f(n).

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Asymptotic Bounds (cont.)

- Intuitively, f(n) = O(g(n)) means that f is less than or equal to g if we disregard differences up to a constant factor.
- Big-O notation gives a way to say that one function is asymptotically no more than another.
- Big-O notation can appear in arithmetic expressions such as $O(n^2) + O(n) \ (= O(n^2))$ and $2^{O(n)}$.
- Sounds of the form n^c , for c > 0, are called *polynomial bounds*.
- Sounds of the form 2^{n^c} , for c > 0, are called *exponential bounds*.

Asymptotic Bounds (cont.)

To say that one function is asymptotically less than another, we use small-o notation.

Definition (7.5)

Let f and g be two functions $f, g : \mathcal{N} \longrightarrow \mathcal{R}^+$. We say that f(n) = o(g(n)) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

For example, $\sqrt{n} = o(n)$ and $n \log n = o(n^2)$.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

Analyzing Algorithms

- Source Consider the single-tape TM M_1 for deciding $\{0^k 1^k \mid k \ge 0\}$.
- Stage 1 takes $2n \ (= O(n))$ steps: *n* steps to scan the input and another *n* steps to reposition the head at the left-hand end of the tape.
- Each execution of Stage 3 takes 2n steps and at most n/2 such executions are required. So, Stages 2 and 3 take at most (n/2)2n (= O(n²)) steps.
- Stage 4 takes n (= O(n)) steps.

9 / 54

イロン 不良 とくほう イヨン 二日

Complexity Classes

Definition (7.7)

Let $t : \mathcal{N} \longrightarrow \mathcal{N}$ be a function. Define the **time complexity class** TIME(t(n)) to be $\{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time Turing machine} \}$.

- Is there a machine that decides A asymptotically faster?
- In other words, is A in TIME(t(n)) for $t(n) = o(n^2)$?

Yih-Kuen Tsay (IM.NTU)

Complexity Classes (cont.)

Below is a faster single-tape TM for deciding A $(= \{0^k 1^k \mid k \ge 0\}).$

- $M_2 =$ "On input string w:
 - 1. Same as Stage 1 of M_1 .
 - 2. Repeat Stages 3 and 4 if both 0s and 1s remain on the tape.
 - 3. If the total number of 0s and 1s remaining is odd, *reject*.
 - 4. Cross off every other 0 and then every other 1.
 - 5. If no 0s or 1s remain on the tape, accept; otherwise, reject."
- The running time of M_2 is $O(n \log n)$ and hence $A \in \text{TIME}(n \log n)$.

Yih-Kuen Tsay (IM.NTU)

Complexity Classes (cont.)

- Below is an even faster TM, which has two tapes, for deciding A (= {0^k1^k | k ≥ 0}).
- $M_3 =$ "On input string w:
 - 1. Same as Stage 1 of M_1 .
 - 2. Copy the 0s on Tape 1 onto Tape 2.
 - 3. Scan across the 1s on Tape 1 until the end of the input, crossing off a 0 on Tape 2 for each 1. If there are not enough 0s, *reject*.
 - If all the 0s have now been crossed off, *accept*; otherwise, *reject*."
- The running time of M_3 is O(n).
- This indicates that the complexity of A depends on the model of computation selected.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Computing 2021 12 / 54

Complexity Relationships among Models

Theorem (7.8)

Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time multitape Turing machine has an equivalent $O(t^2(n))$ time single-tape Turing machine.

- Let M be a k-tape TM running in t(n) time.
- A single-tape TM S simulating M requires O(t(n)) tape cells to store the current contents of M's tapes and the respective head positions.
- It takes O(t(n)) time for S to simulate each of M's t(n) steps.
- 📀 So, the running time of S is $t(n) imes O(t(n)) = O(t^2(n)).$

Yih-Kuen Tsay (IM.NTU)

Complexity Relationships among Models (cont.)

Definition (7.9)

The running time of a nondeterministic TM N is the function $f : \mathcal{N} \longrightarrow \mathcal{N}$, where f(n) is the *maximum* number of steps that N uses on *any* branch of its computation on any input of length n.

Theorem (7.11)

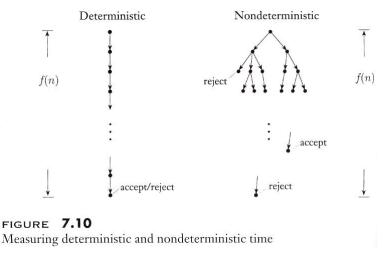
Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time nondeterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic single-tape Turing machine.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

Complexity Relationships among Models (cont.)



Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

* E • * E •

Complexity Relationships among Models (cont.)

- Every branch of N's computation tree has a length of at most t(n).
- The total number of nodes in the tree is O(b^{t(n)}), where b is the maximum number of legal choices given by N's transition function.
- The running time of a simulating deterministic 3-tape TM is $O(t(n)) \times O(b^{t(n)}) = 2^{O(t(n))}$.
- The running time of a simulating deterministic single-tape TM is $(2^{O(t(n))})^2 = 2^{O(2t(n))} = 2^{O(t(n))}$.

Polynomial Time

- For our purposes, polynomial differences in running time are considered to be small, whereas exponential differences are considered to be large.
- Exponential time algorithms typically arise when we solve problems by searching through a space of solutions, called *brute-force search*.
- All "reasonable" deterministic computational models are polynomially equivalent, i.e., any one of them can simulate another with a polynomial increase in running time.
- We shall focus on aspects of time complexity theory that are unaffected by polynomial differences in running time.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Computing 2021 17 / 54

イロト イポト イヨト イヨト 二日

The Class P

Definition (7.12)

P is the class of languages that are decidable in *polynomial* time on a *deterministic* single-tape Turing machine. In other words,

$$\mathsf{P} = \bigcup_k \mathrm{TIME}(n^k)$$

P is invariant for all models of computing that are polynomially equivalent to the deterministic single-tape Turing machine.

P roughly corresponds to the class of problems that are "realistically solvable" on a computer.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Computing 2021

Analyzing Algorithms for P Problems

- Suppose that we have given a high-level description of a polynomial-time algorithm with stages. To analyze the algorithm,
 - 1. we first give a polynomial upper bound on the number of stages that the algorithm uses, and
 - 2. we then show that the individual stages can be implemented in polynomial time on a reasonable deterministic model.
- A "reasonable" encoding method for problems should be used, which allows for polynomial-time encoding and decoding of objects into natural internal representation or into other reasonable encodings.

イロト 不得 トイヨト イヨト 二日

Problems in P

• $PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from s to } t \}.$

Theorem (7.14)

 $PATH \in P$.

• $M = \text{"On input } \langle G, s, t \rangle$:

- 1. Place a mark on node s.
- 2. Repeat Stage 3 until no additional nodes are marked.
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- 4. If t is marked, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Computing 2021 20 / 54

Problems in P (cont.)

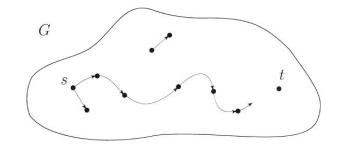


FIGURE 7.13 The *PATH* problem: Is there a path from *s* to *t*?

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

(日) (周) (三) (三)

21 / 54

3

Problems in P (cont.)

• RELPRIME = { $\langle x, y \rangle \mid x$ and y are relatively prime}.

Theorem (7.15)

 $RELPRIME \in P$.

- The input size of a number x is $\log x$ (not x itself).
- E = "On input $\langle x, y \rangle$:
 - 1. Repeat Stages 2 and 3 until y = 0.
 - 2. Assign $x \leftarrow x \mod y$.
 - 3. Exchange x and y.
 - 4. Output x."
- R = "On input $\langle x, y \rangle$:
 - 1. Run E on $\langle x, y \rangle$.
 - 2. If E's output is 1, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

Theory of Computing 2021

Problems in P (cont.)

Theorem (7.16)

Every context-free language belongs to P.

We assume that a CFG in Chomsky normal form is given for the context-free language.

D = "On input $w = w_1 w_2 \cdots w_n$,

```
1.
    If w = \varepsilon and S \to \varepsilon is a rule, accept.
2.
    For i = 1 to n.
3.
   For each variable A.
4.
        Is A \rightarrow b, where b = w_i, a rule?
5.
        If yes, add A to table(i, i).
6.
    For l = 2 to n.
7.
      For i = 1 to n - l + 1,
8. Let i = i + l - 1,
9. For k = i to i - 1,
          For each rule A \rightarrow BC.
10.
11.
             If B \in table(i, k) and C \in table(k + 1, i),
             then put A in table(i, j).
12. If S \in table(1, n), accept; otherwise, reject."
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

The Hamiltonian Path Problem

- A Hamiltonian path in a directed graph is a directed path that goes through each node exactly once.
- HAMPATH = { $\langle G, s, t \rangle | G$ is a directed graph with a Hamiltonian path from s to t}.
- We can easily obtain an exponential time algorithm for HAMPATH.
- No one knows whether HAMPATH is solvable in polynomial time.

The Hamiltonian Path Problem

- A Hamiltonian path in a directed graph is a directed path that goes through each node exactly once.
- HAMPATH = { $\langle G, s, t \rangle | G$ is a directed graph with a Hamiltonian path from s to t}.
- We can easily obtain an exponential time algorithm for HAMPATH.
- No one knows whether HAMPATH is solvable in polynomial time.
- However, verifying the existence of a Hamiltonian path may be much easier than determining its existence.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory

The Hamiltonian Path Problem (cont.)

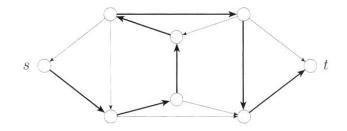


FIGURE 7.17 A Hamiltonian path goes through every node exactly once

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

A B F A B F

The Class NP

Definition (7.18)

A verifier for a language A is an algorithm V, where

$$A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$$

The information represented by the symbol c is called a *certificate*, or *proof*, of membership in A. A *polynomial-time verifier* runs in polynomial time in the length of w.

Definition (7.19)

NP is the class of *polynomially verifiable* languages, i.e., languages that have polynomial-time verifiers.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Computing 2021

The Class NP (cont.)

Theorem (7.20)

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

- Let V be a verifier for $A \in NP$ that runs in time n^k . Construct a decider N for A as follows.
- N = "On input w of length n:
 - 1. Nondeterministically select string c of length n^k .
 - 2. Run V on input $\langle w, c \rangle$.
 - 3. If V accepts, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

(人間) トイヨト イヨト ニヨ

The Class NP (cont.)

- Let N be a nondeterministic decider for a language A that runs in time n^k. Construct a verifier V for A as follows.
- V = "On input $\langle w, c \rangle$:
 - 1. Simulate N on input w, treating each symbol of c as a description of the nondeterministic choice to make at each step.
 - If this branch of N's computation accepts, *accept*; otherwise, *reject*."

- 4 当下 4 当下

The Class NP (cont.)

Definition (7.21)

NTIME $(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine}\}.$

Corollary (7.22) NP = $\bigcup_k \text{NTIME}(n^k)$.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

Analyzing Algorithms for NP Problems

- The class NP is insensitive to the choice of reasonable nondeterministic computational model.
- Like in the deterministic case, we use a high-level description to present a nondeterministic polynomial-time algorithm.
 - 1. Each stage of a nondeterministic polynomial-time algorithm must have an obvious implementation in polynomial time on a reasonable nondeterministic model.
 - 2. Every branch of its computation tree uses at most polynomially many stages.

イロト イポト イヨト イヨト 二日

- A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.
- A *k-clique* is a clique that contains *k* nodes.
- CLIQUE = { $\langle G, k \rangle \mid G$ is an undirected graph with a k-clique}.

Theorem (7.24)

CLIQUE is in NP.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

Problems in NP (cont.)

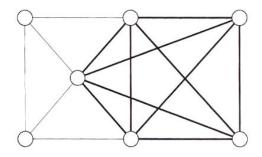


FIGURE **7.23** A graph with a 5-clique

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

32 / 54

- 3

Problems in NP (cont.)

33 / 54

• V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a set of k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, *accept*; otherwise, *reject*."

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness T

► < □ ► < □ ► < □ ►</p>
Theory of Computing 2021

Problems in NP (cont.)

• V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a set of k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."
- 📀 Alternatively,
 - N = "On input $\langle G, k \rangle$:
 - 1. Nondeterministically select a subset c of k nodes in G.
 - 2. Test whether G contains all edges connecting nodes in c.
 - 3. If yes, accept; otherwise, reject."

向下 イヨト イヨト ニヨ

Problems in NP (cont.)

SUBSET_SUM = {⟨S, t⟩ | S = {x₁, · · · , x_k} and for some {y₁, · · · , y_l} ⊆ S, we have ∑y_i = t}.

Theorem (7.25)

SUBSET_SUM is in NP.

- V = "On input $\langle \langle S, t \rangle, c \rangle$:
 - 1. Test whether c is a collection of numbers that sum to t.
 - 2. Test whether S contains the numbers in c.
 - 3. If both pass, accept; otherwise, reject."

Problems in NP (cont.)

SUBSET_SUM = {⟨S, t⟩ | S = {x₁, · · · , x_k} and for some {y₁, · · · , y_l} ⊆ S, we have ∑y_i = t}.

Theorem (7.25)

SUBSET_SUM is in NP.

• V = "On input $\langle \langle S, t \rangle, c \rangle$:

- 1. Test whether c is a collection of numbers that sum to t.
- 2. Test whether S contains the numbers in c.
- 3. If both pass, accept; otherwise, reject."

Iternatively,

N = "On input $\langle S, t \rangle$:

- 1. Nondeterministically select a subset c of the numbers in S.
- 2. Test whether c is a collection of numbers that sum to t.
- 3. If yes, accept; otherwise, reject."

Yih-Kuen Tsay (IM.NTU)

The Class co-NP

- The complements of CLIQUE and SUBSET_SUM, namely CLIQUE and SUBSET_SUM, are not obviously members of NP.
- Verifying that something is *not* present seems to be more difficult than verifying that it *is* present.
- The complexity class co-NP contains the languages that are complements of languages in NP.

- 4 同 6 4 日 6 4 日 6

The Class co-NP

- The complements of CLIQUE and SUBSET_SUM, namely CLIQUE and SUBSET_SUM, are not obviously members of NP.
- Verifying that something is not present seems to be more difficult than verifying that it is present.
- The complexity class co-NP contains the languages that are complements of languages in NP.
- We do not know whether co-NP is different from NP.

- 4 目 ト - 4 日 ト - 4 日 ト

P vs. NP

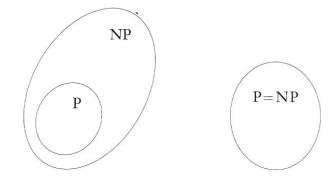


FIGURE **7.26** One of these two possibilities is correct

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

NP-Completeness

- The complexity of certain problems in NP is related to that of the entire class [Cook and Levin].
- If a polynomial-time algorithm exists for any of the problems, all problems in NP would be polynomial-time solvable.
- These problems are called NP-complete.

NP-Completeness

- 😚 The complexity of certain problems in NP is related to that of the entire class [Cook and Levin].
- 📀 If a polynomial-time algorithm exists for any of the problems, all problems in NP would be polynomial-time solvable.
- These problems are called **NP-complete**.
- $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}.$

Theorem (7.27; Cook-Levin)

 $SAT \in P$ iff P = NP

(Equivalently, $SAT \notin P$ iff $P \neq NP$.)

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

Polynomial-Time Reducibility

• When problem A is *efficiently* reducible to problem B, an efficient solution to B can be used to solve A efficiently.

Definition (7.28)

A function $f : \Sigma^* \longrightarrow \Sigma^*$ is a **polynomial-time computable** function if some polynomial-time Turing machine M, on every input w, halts with just f(w) on its tape.

Definition (7.29)

Language *A* is **polynomial-time mapping reducible** (polynomial-time reducible) to language *B*, written $A \leq_{\mathrm{P}} B$, if there is a polynomial-time computable function $f : \Sigma^* \longrightarrow \Sigma^*$, where for every *w*,

$$w \in A \iff f(w) \in B.$$

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Polynomial-Time Reducibility (cont.)

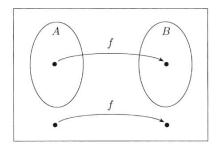


FIGURE 7.30 Polynomial time function *f* reducing *A* to *B*

Source: [Sipser 2006]

Function f transforms the membership problem of A to that of B.

Yih-Kuen Tsay (IM.NTU)

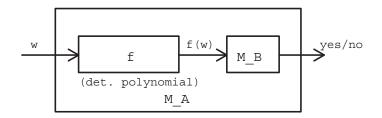
Time Complexity and NP-Completeness

Theory of Computing 2021

- A TE N - A TE N

Polynomial-Time Reducibility (cont.)

• $A \leq_{\mathrm{P}} B$, like $A \leq_{\mathrm{M}} B$, means that a Turing machine M_A for A can be constructed from a given Turing machine M_B for B.



Furthermore, if M_B is a polynomial-time decider for B, then M_A is a polynomial-time decider for A.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Computing 2021 40 / 54

(4月) とうきょうきょう

Polynomial-Time Reducibility (cont.)

41 / 54

Theorem (7.31)

If $A \leq_{\mathrm{P}} B$ and $B \in P$, then $A \in P$.

- Let M_B be a polynomial-time algorithm deciding B and f be the polynomial-time reduction from A to B.
- $M_A = \text{``On input } w$:
 - 1. Compute f(w).
 - 2. Run M_B on input f(w) and output whatever M_B outputs."

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Computing 2021

Example Polynomial-Time Reducibility

A Boolean formula is in *conjunctive normal form*, called a CNF-formula, if it comprises several clauses connected with \lambdas, as in

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})$$

😚 It is a 3CNF-formula if all the clauses have three literals, as in

 $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4) \land (x_4 \lor x_5 \lor x_6)$

• $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3CNF-formula} \}.$

Theorem (7.32)

3SAT is polynomial-time reducible to CLIQUE.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Example Polynomial-Time Reducibility (cont.)

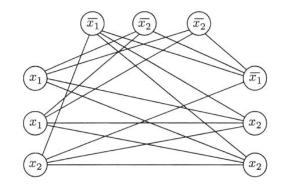


FIGURE 7.33 The graph that the reduction produces from $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

< □ > < □ > < □ > < ≡ > < ≡ > ≡
 Theory of Computing 2021

NP-Completeness

Definition (7.34)

A language *B* is **NP-complete** if it satisfies two conditions:

- 1. B is in NP, and
- 2. every A in NP is polynomial-time reducible to B (in which case, we say that B is NP-hard).

Theorem (7.35)

If B is NP-complete and $B \in P$, then P = NP.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

NP-Completeness (cont.)

The polynomial-time reducibility relation \leq_P is a transitive relation. (Mathematically, \leq_P is a pre-order, i.e., it is reflexive and transitive.)

NP-Completeness (cont.)

- The polynomial-time reducibility relation \leq_P is a transitive relation. (Mathematically, \leq_P is a pre-order, i.e., it is reflexive and transitive.)
- Iransitivity of ≤_P allows one to prove NP-completeness of a problem via a known NP-complete problem.
- If B is NP-complete and $B \leq_{P} C$, then every problem in P is polynomial-time reducible to C.

Theorem (7.36)

If B is NP-complete and $B \leq_{P} C$ for some $C \in NP$, then C is NP-complete.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

The Cook-Levin Theorem

Theorem (7.37)

SAT is NP-complete.

- SAT is in NP, as a nondeterministic polynomial-time TM can guess an assignment to a given formula ϕ and accept if the assignment satisfies ϕ .
- We next construct a polynomial-time reduction for each language A in NP to SAT.
- The reduction takes a string w and produces a Boolean formula ϕ that simulates the NP machine N for A on input w.
- Assume that N runs in time n^k (with some constant difference) for some k > 0.

Yih-Kuen Tsay (IM.NTU)



FIGURE **7.38** A tableau is an $n^k \times n^k$ table of configurations

Source: [Sipser 2006] Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ♡ < ○ Theory of Computing 2021 47 / 54

- If *N* accepts, ϕ has a satisfying assignment that corresponds to the accepting computation.
- If N rejects, no assignment satisfies ϕ .
- Itet C = Q ∪ Γ ∪ {#}. For 1 ≤ i, j ≤ n^k and s ∈ C, we have a variable x_{i,j,s}.
- Variable $x_{i,j,s}$ is assigned 1 iff cell[i, j] contains an s.
- \bigcirc Construct ϕ as $\phi_{
 m cell} \wedge \phi_{
 m start} \wedge \phi_{
 m accept} \wedge \phi_{
 m move}$, where \dots

Size of
$$\phi_{cell}$$
: $O(n^{2k})$.
Size of ϕ_{start} : $O(n^k)$.
Size of ϕ_{accept} : $O(n^{2k})$.
Size of ϕ_{move} : $O(n^{2k})$.

Yih-Kuen Tsay (IM.NTU)

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

$$\begin{split} \phi_{\text{cell}} &= \bigwedge_{1 \leq i,j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{s,t \in C, s \neq t} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \\ \phi_{\text{start}} &= \begin{array}{c} x_{1,1,\#} \land x_{1,2,q_0} \land \\ x_{1,3,w_1} \land x_{1,4,w_2} \land \cdots \land x_{1,n+2,w_n} \land \\ x_{1,n+3,\sqcup} \land \cdots \land x_{1,n^k-1,\sqcup} \land x_{1,n^k,\#} \end{array} . \end{split}$$

$$\phi_{\mathrm{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{\mathrm{accept}}} \; .$$

$$\phi_{\text{move}} = \bigwedge_{1 \leq i \leq (n^k - 1), 2 \leq j \leq (n^k - 1)} (\text{window } (i, j) \text{ is legal}) .$$

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

Theory of Computing 2021

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• Assume that
$$\delta(q_1, a) = \{(q_1, b, R)\}$$
 and $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}.$

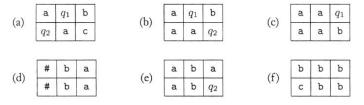


FIGURE **7.39** Examples of legal windows

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness T

→ < □ → < ≥ → < ≥ → Theory of Computing 2021 3

• Assume that
$$\delta(q_1, a) = \{(q_1, b, R)\}$$
 and $\delta(q_1, b) = \{(q_2, c, L), (q_2, a, R)\}.$

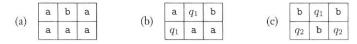


FIGURE **7.40** Examples of illegal windows

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 Theory of Computing 2021

3

• The condition "window (i, j) is legal" can be expressed as

$$\bigvee_{a_1,\cdots,a_6} \underset{\mathsf{legal}}{\bigvee} \begin{array}{l} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge \\ x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6}) \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness Theory of Cor

Theory of Computing 2021 52 / 54

Another Two NP-Complete Problems

Theorem

3SAT is NP-complete.

- The proof of the Cook-Levin theorem can be modified so that the Boolean formula involved is in conjunctive normal form.
- A CNF-formula can be converted in polynomial time to a 3CNF-formula (with a length polynomially bounded in the length of the CNF-formula).
- If a clause contains *I* literals ($a_1 \lor a_2 \lor \cdots \lor a_l$), we can replace it with the *I* − 2 clauses

$$(a_1 \lor a_2 \lor z_1) \land (\overline{z_1} \lor a_3 \lor z_2) \land (\overline{z_2} \lor a_4 \lor z_3) \land \\ \cdots \land (\overline{z_{l-4}} \lor a_{l-2} \lor z_{l-3}) \land (\overline{z_{l-3}} \lor a_{l-1} \lor a_l)$$

Yih-Kuen Tsay (IM.NTU)

・ロン ・伺い ・ヨン ・ヨン … ヨ

Another Two NP-Complete Problems (cont.)

Theorem

CLIQUE is NP-complete.

CLIQUE is in NP and 3SAT $\leq_{\rm P}$ CLIQUE.

Yih-Kuen Tsay (IM.NTU)

Time Complexity and NP-Completeness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □