Theory of Computing 2022: Reducibility

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay
May 9, 2022

1 Introduction
Introduction

e A reduction is a way of converting one problem into another problem in such a way that a solution to
the second problem can be used to solve the first problem.

If a problem A reduces (is reducible) to another problem B, we can use a solution to B to solve A.

Reducibility says nothing about solving A or B alone, but only about the solvability of A in the presence
of a solution to B.

Reducibility is the primary method for proving that problems are computationally unsolvable.

Suppose that A is reducible to B. If B is decidable, then A is decidable; equivalently, if A is undecidable,
then B is undecidable.
2 Undecidable Problems
The Halting Problem
o HALTry = {{M,w) | M is a TM and M halts on w}.
Theorem 1 (5.1). HALTr\ is undecidable.

e The idea is to reduce the acceptance problem Ay (shown to be undecidable) to HALT.
e Assume toward a contradiction that a TM R decides HALTry.

e We could then construct a decider S for Aty as follows.

The Halting Problem (cont.)
S = “On input (M, w), an encoding of a TM M and a string w:

1. Run TM R on input (M, w).
2. If R rejects, reject.

3. If R accepts, simulate M on w until it halts.

>~

. If M has accepted, ; if M has rejected, reject.”

Undecidable Problems

o Ery = {(M)| MisaTM and L(M) = 0}.
Theorem 2 (5.2). Eqy is undecidable.

e Assuming that a TM R decides Ery, we construct a decider S for Aty as follows.
Undecidable Problems (cont.)

S = “On input (M, w):

1. Construct the following TM Mj.

M; = “On input a:

(a) If x # w, reject.
(b) If x = w, run M on input w and if M accepts w.”

2. Run R on input (My).

3. If R accepts, reject; if R rejects,

Undecidable Problems (cont.)

e REGULARTy = {(M) | M is a TM and L(M) is regular}.
Theorem 3 (5.3). REGULART)\ is undecidable.

e Assuming that a TM R decides REGU LART\, we construct a decider S for Aty as follows.
Undecidable Problems (cont.)

S = “On input (M, w):

1. Construct the following TM M.

M5 = “On input z:

(a) If 2 has the form 01",

(b) If does not have this form, run M on input w and if M accepts w.”

2. Run R on input (Ms).

3. If R accepts, ; if R rejects, reject.”

Note: if M does not accept w, then L(Ms) = {0™"1™ | n > 0}, which is not regular; if M accepts w, then
L(M,) = {0,1}*, which is regular.
Undecidable Problems (cont.)

e EQrym = {{My, M) | My and My are TMs and L(M;) = L(Ms)}.
Theorem 4 (5.4). EQry is undecidable.

e Assume that a TM R decides EQrw.

e We construct a decider S for Ety as follows.

e S = “On input (M):

1. Run R on input (M, M), where M; is a TM that rejects all inputs.
2. If R accepts, ; if R rejects, reject.”

Rice’s Theorem

Theorem 5. Any “nontrivial” property about the languages recognized by Turing machines is undecidable.

e Note 1: the theorem considers only properties about languages, i.e., properties that do not distinguish
equivalent Turing machine descriptions.

e Note 2: a property is nontrivial if it is satisfied by some, but not all, Turing machine descriptions.

3 Reduction via Computation Histories

Computation Histories

Definition 6 (5.5). An accepting computation history for M on w is a sequence of configurations Cy, Cy, - - - , Cy,
where

1. C is the start configuration,
2. C} is an accepting configuration, and
3. C;yields Ciqq, 1 <i<I1—1.
A rejecting computation history for M on w is defined similarly, except that Cj is a rejecting configuration.
e Computation histories are finite sequences.

e Deterministic machines have at most one computation history on any given input.

Linear Bounded Automata

Definition 7 (5.6). A linear bounded automaton (LBA) is a restricted type of Turing machine wherein the
tape head is not permitted to move off the portion of the tape containing the input.

e So, an LBA is a TM with a limited amount of memory. It can only solve problems requiring memory
that can fit within the tape used for the input.

(Note: using a tape alphabet larger than the input alphabet allows the available memory to be increased
up to a constant factor.)

Linear Bounded Automata (cont.)

[a[o]a]>]2]

FIGURE 5.7
Schematic of a linear bounded automaton

Source: [Sipser 2006]

Linear Bounded Automata (cont.)
Despite their memory constraint, LBAs are quite powerful.

Lemma 8 (5.8). Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng™
distinct configurations of M for a tape of length n.

Decidable Problems about LBAs
o Arpa = {{M,w)| M is an LBA that accepts w}.
Theorem 9 (5.9). Appa is decidable.

e L = “On input (M, w), an encoding of an LBA M and a string w:

1. Simulate M on input w for gng™ steps or until it halts.
2. If M has halted, if it has accepted and reject if it has rejected. If M has not halted, reject.”
Undecidable Problems about LBAs
o Erpa = {(M) | M is an LBA where L(M) = 0}.
Theorem 10 (5.10). Erpa is undecidable.
e Assuming that a TM R decides Epga, we construct a decider S for Aty as follows.
e S = “On input (M, w), an encoding of a TM M and a string w:

1. Construct an LBA B from (M, w) that, on input z, decides whether z is an accepting computation
history for M on w.

2. Run R on input (B).
3. If R rejects, ; if R accepts, reject.”

Undecidable Problems about LBAs (cont.)

FIGURE 5.11
A possible input to B

Source: [Sipser 2006]

Three conditions of an accepting computation history:
e (U is the start configuration.
e (U} is an accepting configuration.

e (; yields Cjyq, for every i, 1 <i < [.

Undecidable Problems about LBAs (cont.)

By

ERLAMBOE

X]X

q5|b‘]#}...|

\

Y

(;?' C'H 1

FIGURE 5.12
[BA B checking a TM computation history

Source: [Sipser 2006]

Undecidable Problems about CFGs
e ALLcrg = {{G) | G is a CFG and L(G) = X*}.
Theorem 11 (5.13). ALLcrg is undecidable.

e For a TM M and an input w, we construct a CFG G (by first constructing a PDA) to generate all
strings that are not accepting computation histories for M on w.

e That is, G generates all strings if and only if M does not accept w.

e If ALLcrg were decidable, then Aty would be decidable.

Undecidable Problems about CFGs (cont.)
The PDA for recognizing computation histories that are not accepting works as follows.
e The input is regarded as a computation history of the form:
#HOHCTHCHC H - HO#
where C denotes the reverse of C;.

e The PDA nondeterministically chooses to check if one of the following conditions holds for the input:

— (1 is not the start configuration.
— () is not an accepting configuration.

— C; does not yield C;41, for some i, 1 <17 <.

e It also accepts an input that is not in the proper form of a computation history.

Undecidable Problems about CFGs (cont.)

g — o % s e & ... # #

FIGURE 5.14
Every other configuration written in reverse order

Source: [Sipser 2006]

4 The Post Correspondence Problem
The Post Correspondence Problem

e Consider a collection of dominos such as follows:

e Bl bl ey

e A match is a list of these dominos (repetitions permitted) where the string of symbols on the top is
the same as that on the bottom. Below is a match:

SRS
BN

The Post Correspondence Problem (cont.)

e The Post correspondence problem (PCP) is to determine whether a collection of dominos has a match.

e More formally, an instance of the PCP is a collection of dominos:

r{[] [[}

e A match is a sequence 41,99, - - - ,% such that ¢;,¢;, ---t;, = b;, bi, -+ - by,

e PCP = {(P) | P is an instance of the Post correspondence problem with a match}.

Undecidability of the PCP
Theorem 12 (5.15). PCP is undecidable

e The proof is by reduction from Aty via accepting computation histories.

e From any TM M and input w we can construct an instance P where a match is an accepting compu-
tation history for M on w.

e Assume that a TM R decides PCP.

e A decider S for ATy constructs an instance of the PCP that has a match if and only if M accepts w,
as follows.

Undecidability of the PCP (cont.)

i1
L Add #Fqowiwsy - - - Wy FH } o [by }

2. For every a,b € I" and every q,r € @ where ¢ # greject,

qa
br |’

3. For every a,b,c € I' and every ¢,r € Q where ¢ # Greject,

if 6(q,a) = (r,b, R), add [

. B cqa
if 6(¢,a) = (r,b,L), add [b }

4. For every a € I', add [Z].

] [
5 200 [2£] wa [£].

Undecidability of the PCP (cont.)
A start configuration (by Part 1):

‘#\7
9 0 1 0 0

Suppose §(qo,0) = (g7, 2, R). With Parts 2-5, the match may be extended to:
90 0 Lo L#
‘ # \%\#\\H‘\
Undecidability of the PCP (cont.)

6. For every a € I, add {aqaccept} and {qmcepta] .
Qaccept Gaccept

2 1 G 0 2 2111Gal 2 o H# Q) H#

qaccept## :|
7. Add [# .

#%#‘
Ga H#NH#

Undecidability of the PCP (cont.)

t
To ensure that a match starts with b—l ,
1
S converts the collection e , 2 S b to
by ba b
*tq *tq *to o *tg *O
*bix || bix | 7| bokx |’ bk | 7] ©
where
*U = kU] kXU *UI ¥ X Up
Uk = U KU ¥ Uk -k Uk .
Uk = XUk UQ kUG k « == Xk Up

5 Mapping Reducibility
Computable Functions

e A Turing machine computes a function by starting with the input to the function on the tape and
halting with the output of the function on the tape.

Definition 13 (5.17). A function f : ¥* — ¥* is a computable function if some Turing machine
M, on every input w, halts with just f(w) on its tape.

e For example, all usual arithmetic operations on integers are computable functions.
e Computable functions may be transformations of machine descriptions.
Mapping (Many-One) Reducibility

Definition 14 (5.20). Language A is mapping reducible (many-one reducible) to language B, written
A <,, B, if there is a computable function f :¥* — ¥*, where for every w, w € A <= f(w) € B.

% £ (w) es/no
f M B

(computable func.)
M A

Ve

e This provides a way to convert questions about membership testing in A to membership testing in B.

Mapping (Many-One) Reducibility (cont.)

FIGURE 5.21
Function f reducing A4 to B

Source: [Sipser 2006]

e The function f is called the reduction of A to B.

Reducibility and Decidability

Theorem 15 (5.22). If A <,,, B and B is decidable, then A is decidable.

e Let M be a decider for B and f a reduction from A to B. A decider N for A works as follows.
e N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”
Corollary 16 (5.23). If A <,, B and A is undecidable, then B is undecidable.
Note: (PANQ) - R=P = (Q—>R)=P — (-R—-Q)=(PA-R) = -Q

Reducibility and Decidability (cont.)
Theorem 17. HALTry\ is undecidable.

e We show that Ary <,,, HALTmy, i.e., a computable function f exists (as defined by F' below) such
that

(M,w) € Aty <= f((M,w)) € HALT\.
e F'= “On input (M, w):
1. Construct the following machine M’.
M’ = “On input z:
(a) Run M on x.

(b) If M accepts,
(¢) If M rejects, enter a loop.

2. Output (M’ , w).”

Reducibility and Recognizability

Theorem 18 (5.28). If A <,,, B and B is Turing-recognizable, then A is Turing-recognizable.

Corollary 19 (5.29). If A <,, B and A is not Turing-recognizable, then B is not Turing-recognizable.

Corollary 20. If A <,, B (i.e., A <,, B) and A is not co-Turing-recognizable, then B is not co-Turing-
recognizable.

Note: “A is not co-Turing-recognizable” is the same as “A is not Turing-recognizable”.

Reducibility and Recognizability (cont.)

Theorem 21 (5.30 Part One). EQry is not Turing-recognizable.

e We show that Aty reduces to EQrw, i.e., ATy reduces to EQry.
e Since Aty is not Turing-recognizable, EQTy is not Turing-recognizable.
e F'= “On input (M, w):

1. Construct the following two machines M; and M.
M1 =“On any input: reject.”

7

M2 =“On any input: Run M on w. If it accepts,
2. Output (M7, Ms).”
Reducibility and Recognizability (cont.)

Theorem 22 (5.30 Part Two). EQrwm is not co- Turing-recognizable.

e We show that Aty reduces to EQry.
e Since ATy is not co-Turing-recognizable, EQy is not co-Turing-recognizable.
e G = “On input (M, w):

1. Construct the following two machines M; and M.
M1 =“On any input: !

”

M2 =“On any input: Run M on w. If it accepts,
2. Output (M7, Ms).”

10

