
Theory of Computing [Compiled on March 8, 2022] Spring 2022

Homework Assignment #3

Due Time/Date

This assignment is due 2:20PM Tuesday, March 22, 2022. Late submission will be penalized by
20% for each working day overdue.

Note

Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due
time in Yih-Kuen Tsay’s mail box on the first floor of Management College Building 2, or put it on
the instructor’s desk before the class on the due date starts. You may discuss the problems with
others, but copying answers is strictly forbidden.

Problems

(Note: problems marked with “Exercise X.XX” or “Problem X.XX” are taken from [Sipser 2013]
with probable adaptation.)

1. (Exercise 1.7; 10 points) For each of the following languages, give the state diagram of an
NFA, with the specified number of states, that recognizes the language. In all parts, the
alphabet is {0, 1}.

(a) The language {w | w contains 101 or 1011 as a substring, i.e., w = x(101|1011)y for
some x and y} with five states

(b) The language 1∗0+1∗ with three states

2. (Exercise 1.14; 10 points) Show by giving an example that, if M is an NFA that recognizes
language C, swapping the accept and nonaccept states in M doesn’t necessarily yield a new
NFA that recognizes the complement of C. Is the class of languages recognized by NFAs
closed under complement? Explain you answer.

3. (Exercise 1.16; 20 points) Use the construction given in Theorem 1.39 (every NFA has an
equivalent DFA) to convert the following NFA into an equivalent DFA.

3

1 2

ε

a

b

a

a, b

1



4. (Exercise 1.18; 10 points) Use the procedure described in Lemma 1.55 to convert the regular
expression (0 ∪ 1)∗110(0 ∪ 1)∗ into an NFA.

5. (Exercise 1.20; 10 points) Give regular expressions generating the following languages, where
the alphabet is {0, 1}:

(a) {w | every odd position of w is a 1} (Note: see w as w1w2 · · ·wn, where wi ∈ {0, 1})
(b) {w | w doesn’t contain the substring 011}

6. (Exercise 1.21; 20 points) Use the procedure described in Lemma 1.60 to convert the following
finite automaton into a regular expression.

3

1 2
a, b

b

ab

a

7. (Exercise 1.24; 10 points) A finite-state transducer (FST) is a type of deterministic finite
automaton whose output is a string rather than accept or reject. The following are state
diagrams of finite state transducers T1 and T2.

q1 q2

0/0
1/0

2/1

1/1
2/1

0/0

q1

q2q3

a/1

b/1 b/0

a/1

a/0

b/1

T1 T2

Each transition of an FST is labeled with two symbols, one designating the input symbol for
that transition and the other designating the output symbol. The two symbols are written
with a slash, /, separating them. In T1, the transition from q1 to q2 has input symbol
2 and output symbol 1. Some conditions may have multiple input-output pairs, such as
the transition in T1 from q1 to itself. When an FST computes on an input string w, it
takes the input symbols w1 · · ·wn one by one and, starting from the start state, follows the
transitions by matching the input labels with the sequence of symbols w1 · · ·wn = w. Every
time it goes along a transition, it outputs the corresponding output symbol. For example, on

2



input 2212011, machine T1 enters the sequence of states q1, q2, q2, q2, q2, q1, q1, q1 and produces
output 1111000. On input abbb, T2 outputs 1011. Give the sequence of states entered and
the output produced in each of the following parts.

(a) T1 on input 120221

(b) T2 on input baabba

8. (Exercise 1.25; 10 points) Read the informal definition of the finite state transducer given in
Exercise 1.24. Give a formal definition of this model, following the patterns in Definition 1.5
(Page 35 in Sipser’s book or Page 7 of the slides). Assume that an FST has an input alphabet
Σ and an output alphabet Γ but not a set of accept states. Include a formal definition of the
computation of an FST. (Hint: an FST is a 5-tuple. Its transition function is of the form
δ : Q× Σ −→ Q× Γ.)

3


