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HW#6 Problem 1

(Exercise 2.2; 20 points)

(a) Use the languages A = {a"0"¢™ | m,n > 0} and B = {a™V"c" | m,n > 0}, together
with the fact that {a"b"c¢™ | m,n > 0} is not context free, to show that the class of
context-free languages is not closed under intersection.

(b) Use the preceding part and DeMorgan’s law to show that the class of context-free
languages is not closed under complementation.
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HW#6 Problem 1 (a)

Transform languages A and B into the new forms:
A= {a’bic*| (i =7)A(i,7,k>0)}, and
B={a'Vc" | (j=k)A(i,j,k 2 0)}

The intersection of A and B
= {a'bick | (i=7)A(j=k)A(i,7,k > 0)}, which is equal to
{a"b"c™ | m,n > 0}

We've known that A and B are context-free languages, but the
intersection of A and B = {a"b"c"™ | m,n > 0} is not context free,
so the class of context-free languages is not closed under intersection.
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HW#6 Problem 1 (b)

DeMorgan's law: ANB=AUB

We've known that the class of context-free languages is closed under
union. Now suppose that the class of context-free languages is closed
under complementation and A and B are two context-free languages:

A and B are context free.
= A and B are context free.
= AU B is context free.
= AU B is context free.
= AN B is context free.

= false
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HW#6 Problem 1 (b)

We've known that the class of context-free languages is not closed
under intersection in probleml (a), contradiction.

So the class of context-free languages is not closed under
complementation.
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HW#6 Problem 2

(Exercise 2.5; 20 points) Give informal descriptions and state diagrams of pushdown
automata for the following languages. In all parts the alphabet ¥ is {0,1}.

(a) {w | the length of w is odd}
(b) {w | w is a palindrome, that is, w = wf}
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HW#6 Problem 2 (a)

{w | the length of w is odd}

0,e >0 0,0 — €
l,e >0 1,0 > ¢
start —( 4o 5] D) 43
Qe,e—>$ &O,E—N &6,3—% @
l,e — €
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HW#6 Problem 2 (b)

{w | wis a palindrome, that is, w = w’t}

0,e — 0 0,0 — ¢
Le—1 1L,1—e
€,e—$ 0,e =€ 6% —¢
l,e —» ¢
€,€— €

Homework 6 - 10 Theory of Computing 2022 9/134



HW#6 Problem 3

(Exercise 2.12; 10 points) Convert the following CFG to an equivalent PDA, using the

procedure given in Theorem 2.20.
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HW#6 Problem 3

start —| 9start

e,e—$
€,e > F
qloop
€, —e
qaccept
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HW#6 Problem 3
E—-E+T

e, E—>T

start — O

e,e—$

€,€— + €,e > F

O

e,ce > F
 /

6% — e

qaccept
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HW#6 Problem 3
T—TxF

e, E—>T
start — O

e,T —F

€,e—$ O

€,€— + €,e > F

€,€ — X e,e > T

O O

e,ce > F
 /

6% — e

qaccept
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HW#6 Problem 3
F— (F)

e —=T €,€— + €,e > FE
startH ’ O O—°
e,T —F O GE—= X €,e—T
e,e—$ N
e, F—) O ce—E ee — (
%
e,ce > F
o
6% — e
qaccept
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HW#6 Problem 3

Remaining grammar

start e, —T O €,6— + O e,ce > F
T —F ~ HEX e,e > T
e,e— 9 ~ ~
eF —) — €,e > FE — ee— (
/ /
€,c > F

 /

e E—-T €T —F

€
6% —e
+,+—2€e X, x =€

Qaccept
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HW#6 Problem 4

4. (Problem 2.39; 20 points) Let G =

(STMT) —
(IF-THEN) —
(IF-THEN-ELSE) —
(ASSIG) —

(V, %, R, (STMT)) be the following grammar.

(ASSIGN) | (IF-THEN) | (IF-THEN-ELSE}
if condition then (STMT)

if condition then (STMT) else (STMT)
a:=1

Y = {if,condition,then,else,a:=1}

V = {{STMT), (IF-THEN), (IF-THEN-ELSE}, (ASSIG)}

G is a natural-looking grammar for a fragment of a programming language, but G is

ambiguous.

(a) Show that G is ambiguous.

(b) Give a new unambiguous grammar for the same language.
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HW#6 Problem 4 (a)

Counterexample:
if condition then if condition then a:=1 else a:=1

There are two way to obtain this language:

1.

(STMT)

— (IF-THEN)

= if condition then (STMT)

= if condition then (IF-THEN-ELSE)

= if condition then if condition then (STMT) else
(STMT)

= if condition then if condition then a:=1 else a:=1
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HW#6 Problem 4 (a)

2.

(STMT)

= (IF-THEN-ELSE)

= if condition then (STMT) else (STMT)

= if condition then (IF-THEN) else (STMT)

= if condition then if condition then (STMT) else
(STMT)

= if condition then if condition then a:=1 else a:=1

So GG is ambiguous.
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HW#6 Problem 4 (b)

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)

(IF-THEN) — if condition then (STMT)

(IF-THEN-ELSE) — if condition then (STMT) else (STMT)
(ASSIGN) — a:=1

The problem of the original grammar G is that when
(IF-THEN-ELSE) appears, we expect that the if and else in it
should be matched, but the (STMT) in front of the else may have a
unmatched if which may wrongly match the else.

To solve the problem, we need to guarantee that all if and else
between the if and else in (IF-THEN-ELSE) should already be

matched.
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HW#6 Problem 4 (b)

A new unambiguous grammar G”:

(STMT) — (ASSIGN) | (IF-THEN) | (IF-THEN-ELSE)

(IF-THEN) — if condition then (STMT)

(IF-THEN-ELSE) — if condition then (STMT-M) else (STMT)
(STMT-M) — (ASSIGN) | (IF-THEN-ELSE-M)

(IF-THEN-ELSE-M) — if condition then (STMT-M) else (STMT-M)

(ASSIGN) — a:=1

We guarantee that all if and else in -M variables have already been
matched.
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HW#6 Problem 5

5. (Problem 2.32; 20 points) Let A/B = {w | wz € A for some = € B}. Show that, if A is
context free and B is regular, then A/B is context free.
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HW#6 Problem 5

24 A/B $t k< PDA
% PDA MA = (QA,Eara(SA)qu’FA)

DFA MB = (QB? ZvéBvQOB7FB>

EHE My PR E A RS

T w R M)

BorEE R TiRE i ~ — & symbols > st My 8 Mp

{,
TR B FERE A FRILE My ST R R ek My i

aﬁ;wgfﬁik% sHA o E vk i
B o % B30 & accepting state qu* 773
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HW#6 Problem 5

MA/B = (Qa 27F76> QOvF)

RQ=0Q4UQ4xQp
2@ Qy AF-HiH chstate LB QuxQp AFZHH

do = doa
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HW#6 Problem 5

b FEEC B My
?"J'*~ QAEQA,bGF
Faey I aE M, d it
5((]A,Cl, b) = 5A(QA7 a, b)

Fla=c>§afhit g M, v & Fpgs
Bedg R A %0 42 stack ALER chE BL > F] G e T A AL
T 1y g:}u ,}J %ﬂ..;}'f{_mb 3&‘?"—2{

g My Bz EF s kol > @ Mg i qup B4
5(QA»67b) - 5A(QA767b) U {(<QA7QOB>7b)}

5‘—;
e 1y
\%\3\:\;
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HW#6 Problem 5

FOMFE R R M,y &2 My

3 g €Quqg € Qp,bel

FE aeX

B s ~ symbols R B BZ A S - PR 0 % 2 FEER T At
6((QA)QB)7CL7 b) = {}

Fi a=¢
BEARR R TSR LRk iis R e REE TR G
symbols #7:& 4
B EAER? B*ﬁi?] ~ & 1 symbol & € A7 i Mg A &
5((QA¢QB)’€76) =
{((¢4:qB),c) | Fa € X.(q4,c) € 04(qa,a,0) Nqp € 65(qp, a)}
U

{((da-dB):¢) | (d4,c) €64(qa,6,b) Nag = qp}
P B B3 a PR My & Mp BEAOF

4

¥
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HW#6 Problem 5

WA AP E N A/B 4 context-free language & #
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HW#6 Problem 6

6. (10 points) Prove, using the pumping lemma, that {a™b"c¢™*™ | m,n > 1} is not context
free.
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HW#6 Problem 6

Let A = {a™b"c™ "™ | m,n > 1}.
Prove that A is not regular.
Use the pumping lemma:

Let s be aPbPcP*P, where p is the pumping length for A.
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HW#6 Problem 6

Cases of dividing s as uvxyz (where |vy| > 0 and |vy| < p):
@ Both v and y contain only one type of symbol, e.g.,

P p pXPp
—_—— . . 2 2 .
a----ab-----bc--¢, in which case, uv°xy”z will have wrong
o ——
v €T Yy

number of c's which is not equal to :
the number of a's x the number of b’s,

qPtippticpxp
or
P P pXp
a---ab -bC- ----¢, in which case, uv?zy?z will also have
- ———
v €T Yy

wrong number of ¢’s which is not equal to :

the number of a's x the number of b’s,
aPbpPticpxpti
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HW#6 Problem 6

Cases of dividing s as uvxyz (where |vy| > 0 and |vy| < p):

e Either v or y contains more than one type of symbol, e.g.,

a- - -ab----bc--c, in which case, uv2wy22 will have some
N
voT oy

a's and b's out of order and so is not in A.
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HW#7 Problem 1

(Exercise 3.2; 10 points) Consider the Turing machine for {w#w | w € {0,1}*} discussed
in class. Give the sequence of configurations (using the notation ugv for a configuration)
that the machine goes through when started on the input 01#01.
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HW#7 Problem 1

01401 zq1#x1  zzq #2x

2@ 1901 zxgs#xl  zaHqgrx
rlq,#01  za#Hqxl zrHrggx
x1#q,01  za#Hzxqsl zrHzogg
rlgg#rl  zx#qerr  TTHITTgecep
rq 1#xl  zrrqs#Hax

grxl#rl  xqrxra
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HW#7 Problem 2

(20 points) Give a formal description (with a state diagram) of a Turing machine that
decides the language {w € {0,1}* | w is nonempty and contains twice as many 1s as 0s}.
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HW#7 Problem 2

L = {w € {0,1}* | w is nonempty and contains twice as many as 1s
as Os }.

T™y, is a 7-tuple (Q, %, 1,8, qos Quccept Treject): Where

Q = {q07q17 5975 Qaccepts qreject}'
s = {0,1},
r={0,1,,8%}

qo is the initial state,

Qaccept 1S the accept state,

Qreject 1S the reject state, and
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HW#7 Problem 2

e )= (all undescribed transitions lead to qreject)

N

start
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HW#7 Problem 3

(Exercise 3.7; 10 points) Explain why the following is not a description of a legitimate
Turing machine.

Myaqa = “The input is a polynomial p over variables x1,...,zx:

(a) Try all possible settings of x1,..., 2 to integer values.
(b) Evaluate p on all of these settings.

(c) If any of these settings evaluates to 0, accept; otherwise, reject.”
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HW#7 Problem 3

AP AWEL LE OB EH?
EoBEERERE G T

e Merg ) 8509

S UL 2 T Ry
EE! g’ﬁ s f;;fﬁ? e

dod Gl G- B 7R 012 HET 2
£ ok 3 B ?

00 10 20... ‘?sfaOO 1001 20 11 02... ?
T RIS ;,bﬂqf;mﬁﬁmg}g

Homework 6 - 10 Theory of Computing 2022 37 /134




HWZ#7 Problem 4

(Problem 3.16; 10 points) Show that the collection of decidable languages is closed under
concatenation.
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HW#7 Problem 4

Pl - S Bl % % decide % B decidable language

B3k @ & decidable language A B #t & 3| <7 Decider M 4 Mp
#dl M = "On input w,

1. Divide w into zy (|Jw| + 1 different division)

2. Input = to M, and y to My (try any possible with |w| + 1
division)

3. Repeat Step 1 and 2, if both M, My accept on some z v,
accept, otherwise, reject.”

A w A FRERFE TR BERT w+ 1

@ 2 Decider My & Mp 35 ¢ %5

M os - 2 T URFRP R 1248 0 M decides the concatenation
of A and B
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HW#7 Problem 5

5. (Problem 3.18; 10 points) A Turing machine with a doubly infinite tape is similar
to an ordinary Turing machine, but its tape is infinite to the left as well as to the right.
The tape is initially filled with blanks except for the portion that contains the input.
Computation is defined as usual except that the head never encounters an end to the
tape, as it moves left. Show that this type of Turing machine recognizes the class of

Turing-recognizable languages.
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HW#7 Problem 5
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HW#7 Problem 5
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HW#7 Problem 5
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HW#7 Problem 5
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HW#7 Problem 5

#- state diagram 4§ @ 11— > ¥ 4 LR Ep 5]

Fo & e diagram X% - iEASF > MRS TR > ¥ - By
R E

hrxd o X (HEIIEY § ) #5315 - B state
diagram
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HW#7 Problem 5
% 3RE R A5k 0 transition
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HW#7 Problem 6

6. (Problem 3.20; 20 points) A Turing machine with stay put instead of left is similar
to an ordinary Turing machine, but the transition function has the form

§:Q@xT = QxT x{R,S}

At each point the machine can move instead its head right or let it stay in the same
position. Show that this Turing machine variant is not equivalent to the usual version.
What class of languages do these machines recognize?
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HW#7 Problem 6
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HW#7 Problem 6
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HW#7 Problem 6
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HW#7 Problem 6
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HW#7 Problem 6

'

7R NFAAZEE € 7 Quecepe S0R BE & &AL ?
Fl 5 Bl & 18 A 5 qaccept D i
“t 01 NFA hiz i i ot € 3 - ¥
A B+ ¢ accepting state

4 3% accepting state = qccept
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HW#7 Problem 6

B3k R~ B) % 1% ¢ transition function 5 0 > @ NFA 7 transition

relation &_0"(¢" € 6'(q,))

FEMFWHE g RERRI-Baecl aTEh Xel
0(g,a) = (¢, X,R)» FIZ A+ A5 3 F &1L E X #71Y
(¢,a,q") €6

6(g.a) = (¢, X,9)  FlZ@®T ki » 3 & e X 1
(¢,a,(¢', X)) €6

5%??’%“2%%"3;‘*

FRABGH A AT -B Xl aThY el
5(q, X)=(¢,Y,R)» Fl3 L4513 FRILE Y > ¥1)
((‘LX)vea (]/) ey

8¢, X)=(¢,Y,S) Fla®™ ki » g RY > #112
((¢,X),6,(¢",Y)) €

it ¢ * etransition 2 HoER A F 1F
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HW#7 Problem 6

NFA #38 TM &gk iiBic- BaeX a T X el :
(¢,a,q9") € ¢

(¢,a,(¢', X)) € ¢

NFA % TM & g i fyed - B X el > a T Y el
(¢, X),e,q") €6

(¢, X), e, (¢, Y)) €9

NFA ##t TM EJZ accepting state:

(qaccept7 €, qt,lccept/) c 5/ )
((qaccept7X>7 €, qaccept) e€d forall X el

(Goceepts @ q;wept) € forallaeX

Homework 6 - 10 Theory of Computing 2022

54 /134



HW#7 Problem 6

e
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HW#7 Problem 7

7. (Problem 3.22; 20 points) Let a k-PDA be a pushdown automaton that has k stacks. Thus
a 0-PDA is an NFA and a 1-PDA is a conventional PDA. You already know that 1-PDAs
are more powerful (recognizing a larger class of languages) than 0-PDAs.

(a) Show that 2-PDAs are more powerful than 1-PDAs.

(b) Show that 3-PDAs are not more powerful than 2-PDAs. (Hint: simulate a Turing
machine tape with two stacks.)
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HW#7 Problem 7
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HW#7 Problem 7
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HW=#8 Problem 1

(10 points) Give a formal definition (with a state diagram) of a Turing machine that shifts
the input string one tape cell to the right and put a , (blank symbol) in front of the input.
The input alphabet is {0, 1}.
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The Turing machine T™ for the problem is a 7-tuple
(Q, 5,16, 40, Quccept: reject), Where
® Q= {4o: 91+ 92 Qaccept: reject }
¥ ={0,1},
r={0,1,.},
qo is the initial state,

Qaccept 1S the accept state,

Qreject 1S the reject state, and
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(Exercise 3.4; 10 points) Give a formal definition of an enumerator (like that of an NFA,
PDA, or Turing machine). Consider it to be a type of two-tape Turing machine that uses
its second tape as the printer. Include a definition of the enumerated language.
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An enumerator is a 7-tuple (Q,>,T',4, g, , Where

Q, 3, T are all finite sets and

Q is the set of states,

3 is the output alphabet, where the blank symbol | ¢ ¥,

I' is the tape alphabet, where , € T"and ¥ C T,

0:QxT = QxT x{L,R} x (XU {e,#}) is the transition
function,

qo € @ is the initial state,

Qprint € @ is the print state, and

Qprint> reject )

Qreject € Q is the reject state.
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When we are in state q,,,.;,;, and the content of second tape (printer)
IS W = wy Hwott - w,F#L -, where w;, € ¥* for 1 < ¢ <n, the
collection of all possible occurrences of w, in w is called enumerated
language, namely the language enumerated by the enumerator.

Homework 6 - 10
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(Problem 3.11; 20 points) Show that single-tape TMs that cannot write on the portion of
the tape containing the input string recognize only regular languages.
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Let M = (Q,%, T, 40, Quccepts Greject) b€ @ single-tape T™ that
cannot write on the input portion of the tap. A typical case when M
works on an input string x is as follows:

the tape head will stay in the input portion for some time, and then
enter the non-input portion (i.e., the portion of the tape on the right
of the |z|*" cells) and stay there for some time, then go back to the
input portion, and stay there for some time, and then enter the
non-input portion, and so on.

I 1) Y X1 )

input portion  non-input portion
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m
L
1
out

We call the event that the tape head switches from input portion to
non-input portion an out event, and the event that the tape head
switches from non-input portion to input-portion an in event.
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Let first, denote the state that M is in just after its first "out”
event (i.e., the state of M when it first enters the non-input portion).

In case M never enters the non-input portion, we assign
Jirst, = Quecept It M accepts x, and assign first, = G,eject If M
does not accept .
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Next, we define a characteristic function f, such that for any ¢ € @,
f.(q) = ¢’ implies that if M is at state ¢ just after its "in" event, M
will move to state ¢’ after its next "out” event.

In case M never enters the non-input portion again, we assign
J2(@) = Quccepr if M enters the accept state inside the input portion,
and ¢, .. otherwise.
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Now we can define the binary relation R; over ¥* for the language L
of T™M M as follows:

x Ry y iff
o first, = first,, and
e forall q, f,.(q) = fy(Q)-

We can observe the following property (requirements for
Myhill-Nerode Theorem):

x R; y iff z and y are indistinguishable by L
(namely, z R, y iff Vz € ¥*(zz € L <> yz € L))

Why?
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Let we consider two strings x and y with the same first and f:
Situation 1:

If first, = first, = (Quccept OF Greject): © and y will both be
accepted or rejected at the same time before "out” event happens.
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Situation 2:

If first, = first, = ¢ # (Quccept O Greject) M, and M, will stay in
the same state ¢ and the heads of them stay in the same position of
empty portion of two tapes ,which means that M and M, will take
the same actions in this portion (write the same symbol and move to
the same state, i.e. if M, accepts, M, accepts at the same time).
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x alcld|b|U
]
Y alc|d|b|lUlUlU
]

Situation 2 (cont.):
How about "in"” event happens?

Situation 2-1:
Because for all ¢, f,(q) = f,(q), and M, and M, stay at the same
state ¢ when they are about to perform the "in" event, if

fa:(Q> = fy(Q> = (Qaccept or QTeject>' Similarlyv x and Yy will both be
accepted or rejected at the same time inside the input portion.
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x alcld|b|U
L *
Yy alc|d|b|lUlUlU
L *

Situation 2-2:

It f2(q) = fy(@) = & # (daccept O Greject): M, and M, will stay in
the same state ¢’ and the heads of them stay in the same position of
non-input portion of two tapes (not empty now, but with the same
string). Similarly, M, and M, will take the same actions in this
portion.

If "in" event happens again, Situation 2 will happen repeatedly until
M, and M, accept or reject.
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Now consider the strings xz and yz, you may notice that it is similar
to Sttuation 2-2, the non-input portion is not empty doesn't affect
M, and M, to take the same actions in this portion.

So, M accepts xz if and only if M accepts yz, i.e. x and y are
indistinguishable by M.
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In this situation, we say that x and y are in the same equivalence
class (all strings in an equivalence class are indistinguishable to each
other).

How many possibilities are there at most for the equivalence classes
of M?
e first, has |Q| possibilities.
o f.(q) has |Q| possibilities for each ¢ € Q, i.e. |Q[!%! possibilities
totally.

So, there are at most |Q||Q|+1 equivalence classes, that is, the
number of distinguishable strings are finite (R, is of finite index). By
Myhill-Nerode theorem, the language L is regular.
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(Problem 3.13; 20 points) Show that a language is decidable iff some enumerator enumer-
ates the language in the standard string order (the usual lexicographical order, except
that shorter strings precede longer strings) .
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Proof: if a language is decidable, there's an enumerator enumerates
the language in the standard string order.

Let D be the decider that decides the language A and ¥ is the
alphabet of A, we can construct an enumerator E as follows:

Because X is countable, F can pick string s from ¥* in a specific
order and run D on s. If D has accepted, print s out and pick the
next string; otherwise, do nothing and pick the next string directly.
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Proof: if there's an enumerator enumerates a language in the
standard string order, the language is decidable.

Let F be the enumerator that enumerates the language A in the
standard string order, we can construct a decider D on input string s
as follows:

Run E, when E’s turn to print s (will be in finite turns), if E prints
s, accept; otherwise, reject.( 2| %7% "8 B 4_F| & Er s chpF iz £ F
4Pl s Aok BRIl s IR (G chd B Aritd Bl s 4 sk

BB )
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(Exercise 4.3; 10 points) Let ALLppa = {(A) | A is a DFA and L(A) = £*}. Show that
ALLpgy is decidable.
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We can construct a decider D as follows:

D = "On input (A), where A is a DFA:

1. Mark the initial state of A.

2. Mark the states of A that can be arrived from any marked states.
3. Repeat step 2 until no state can be marked.

4. If there is any non-accepting state marked, reject; otherwise,
accept.”

Homework 6 - 10
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Reduction method:

Let T™ T decides E.,, we can construct a decider D as follows:

D = "On input (A), where A is a DFA:
1. Construct the cor’rﬂ)lement A of A.

2. Run T on input (A).
3. If T" accepts, accept; otherwise, reject.”
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(20 points) Let A = {(M,N)} | M is a PDA and N is a DFA such that L(M) C L(N)}.
Show that A is decidable.
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Use the property: A C B< AN B = 0.
Let T™M R decides E., we can construct a decider D as follows:

D = "On input (M, N), where M is a PDA and N is a DFA:

1. Construct the complement N of V.

2. Construct a PDA P that recognizes the intersection of M and N

(the intersection of a context-free language and a regular language is
context free).

3. Let Gp be the context-free grammar that recognized by P, run R
on input (Gp).

4. If R accepts, accept; otherwise, reject.”
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(Problem 4.4; 10 points) Let Aecra = {(G) | G is a CFG that generates £}. Show that
Accpg is decidable.
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We can construct a decider D as follows:

D = "On input (G), where G is a CFG:
1. Convert G to an equivalent grammar in Chomsky normal form G’.

2. If (Sy — €) € G', accept (in Chomsky normal form, only S, can
generate ¢€); otherwise, reject.”

Homework 6 - 10
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Reduction method:

Let T™M S decides A we can construct a decider D as follows:

CFG?

D = "On input (G), where G is a CFG:
1. Run S on input (G| e).
2. If S accepts, accept; otherwise, reject.”
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(Exercise 4.9; 10 points) Review the way that we define sets to be of the same size in
Definition 4.12. Show that “are of the same size” is an equivalence relation.
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We have the definition that if there is a one-one correspondence

between two sets A and B, A and B are considered to have the
same size.

To prove that "A and B are of the same size" is an equivalence
relation, we need to prove the following properties:
@ Reflexive

@ Symmetric

@ Transitive

Homework 6 - 10
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Reflexive:

Trivial. We can construct a function f, according to the following
rule: f4(a) = a, where a € A.

Obviously, f, is a correspondence.

Homework 6 - 10
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Symmetric:

Let f4p: A — B bea function, which is also a correspondence.
We can construct a relation fg, : B — A defined by the following
rule: fpa(b) =a if f45(a) =b. We can prove that fz, is a
function and is also a correspondence:

@ fpaisa function: for all b € B, fz4(b) has at least one
output a € A (f4p is onto) and at most one output a € A
(fap is one-to-one). Hence for all b € B, f54(b) has exactly
one corresponding output a € A.

® fpa is one-to-one: if fg, is not one-to-one, f,5(a) may have
two or more possible outputs, then f, 5 would not be a
function.

@ fpa is onto: because f,p is a function, all a € A have one
corresponding f(a) € B.
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Transitive:

Let fup: A — B, fgo : B— C be two functions, which are also
correspondences. We can construct a relation f o : A — C
defined by the following rule: f,-(a) = fga(fag(a)). We can prove
that f4o is a function and is also a correspondence:

e fucisa function: for all input a € A of f,, we can obtain a
fixed output b € B through f,z(a) and a fixed output ¢ € C
through fp~(b). Hence, for all input a € A, f4-(a) has a fixed
output c € C.

o fac is one-to-one: if x # vy, fap(x) # fap(y) because f,p5 is

one-to-one, and fpc(fap()) # fpc(fap(y)) because fpe is
one-to-one.

@ fuc isonto: forall ¢ € C, there is an b € B such that
fec(b) = ¢ (fpe is onto), and for all b € B, thereis ana € A
such that f,z(a) = b (f4p is onto). So for all ¢ € C, there is
an a € A such that f,-(a) = c.
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(Problem 4.12; 10 points) Let A be a Turing-recognizable language consisting of descrip-
tions of Turing machines, {{(M,), (Ma),...}, where every M; is a decider. Prove that some
decidable language D is not decided by any decider M; whose description appears in A.
(Hint: you may find it helpful to consider an enumerator for A.)
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(Problem 4.14; 20 points) Let C' = {(G,z) | G is a CFG and z is a substring of some
y € L(G)}. Show that C' is decidable. (Hint: an elegant solution to this problem uses the
decider for Ecrg.)
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M = “On input (G, z) where G is a CFG:

1. Construct a CFG G' s.t. L(G') = L(G) N X*x¥*
2. Run Mg _ . oninput (G')

3. If MECFG accept, reject; otherwise, accept.”

twE B Fppea g R S o 102 F C & decidable
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4. (Problem 4.18; 20 points) A useless state in a pushdown automaton is never entered on
any input string. Consider the problem of determining whether a pushdown automaton
has any useless states. Formulate this problem as a language and show that it is decidable.
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M = “On input (P), P is a PDA:

#- PDA #173 s &‘FK%‘ = nonaccepting

Choose one state to be accepting

Convert this PDA into CFG G

Run My, __ . oninput (G)

Repeat step 2 to 4

If MEcpc has ever accepted, accept; otherwise, reject.”

1.
2.
3.
4.
5.
0.
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5. (Problem 4.31; 20 points) Let INFINITEppa = {{M) | M is a PDA and L(M) is infinite}.
Show that INFINITEppa is decidable.

Homework 6 - 10 Theory of Computing 2022 114 /134



HW+#9 Problem 5
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Y = “On input (M) where M is a PDA:

1. Convert M to a CFG G and compute G's pumping length p.

2. Construct a regular expression F that contains all strings of length
p or more.

3. Construct a CFG H such that L(H) = L(G) N L(E)

4. Test L(H) = (), using the Ey e decider R.

5. If R accepts, reject; if R rejects, accepts. "
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6. (Exercise 5.4; 20 points) If A is reducible to B and B is a regular language, does that
imply that A is a regular language? Why or why not?
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(Problem 5.9; 10 points) Let AMBIGcrg = {(G) | G is an ambiguous CFG}. Show that
AMBIGcrg is undecidable. (Hint: use a reduction from PCP. Given an instance

p={le] [e] - [))

of PCP, construct a CFG G with the rules:

S = T|B
T — tTay |- [t,Tay [ tiay |- | tgay
B — tiBa ‘ | tpBaj ‘ tiay | | trag,
where aq,...,a) are new terminal symbols. Prove that this reduction works.)
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Assume that a T™ D 4,5 decides AMBIG, ., we can construct a
decider D that decides PCP as follows:

D = "On input (P), where P = {[Z—i] , [Z—z] TR [Z—’;] }:
1. Construct a CFG G with the rules:
S—T|B
T —t,Tay |- |tpTay | tyay |- | tray
B = byBay |- | byBay | bjay | - | bray

2. Run Dy p1c on input (G).
3. If Dyypic accepts, accept; otherwise, reject.”

But we've known that PCP is undecidable, so AMBIG is
undecidable.
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(Problem 5.14(b); 20 points) Define a two-headed finite automaton (2DFA) to be a de-
terministic finite automaton that has two read-only, bidirectional heads that start at the
left-hand end of the input tape and can be independently controlled to move in either
direction. The tape of a 2DFA is finite and is just large enough to contain the input plus
two additional blank tape cells, one on the left-end and one on the right-hand end, that
serve as delimiters. A 2DFA accepts its input by entering a special accept state. For
example, a 2DFA can recognize the language {a"b"c" | n > 0}.

Let Eopra = {(M) | M is a 2DFA and L(M) = (}}. Show that Esppa is undecidable.
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We can reduce E.,, to Eypp, -

The idea is to construct a 2DFA that recognizes the accept
computational history of a T™M M.

To do so, the 2DFA needs to check if the first and the last
configurations are the starting configuration and the accepting

configuration and then check for each transition whether it is valid in
M.

It is able to do this task because with the two heads we can compare
the configurations without writing anything (just like how it
recognizes the language {a"b"c"™ | n > 0}).
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Assume that a T™M D,,,, decides F, .., we can construct a decider
D that decides E,, as follows:

D = "On input (M), where M is a T™:

1. Construct a 2DFA N from M as described in previous slide.
2. Run D, ., on input (N).

3. If Dy, accepts, accept; otherwise, reject.”

But we've known that £, is undecidable, so E, ., is undecidable.
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(Problem 5.18(b); 10 points) Use Rice’s theorem to prove the undecidability of the lan-
guage {(M) | M is a TM and 101 € L(M)}. (Note: you should show that Rice’s theorem
is applicable for the problem/language.)

Homework 6 - 10 Theory of Computing 2022 124 /134



HW#10 Problem 3

When we use Rice's Theorem to prove the decidability of a language,
we need to confirm if the property is nontrivial.

{M is a T™M} is the input constraint (we do not need to discuss), so
we only need to consider the property {101 € L(M)}.
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{101 € L(M)} is obviously an nontrivial property because there
must exist some TM that recognizes the string 101 and some do not.

e.q. ¥ = {0, 1}, the left T™ recognizes the string 101 but the right
one does not:

@IHRG\O%R 0 0~>R 0—R

N
T 1— 0—
start start
Qaccept ‘—> Qaccept
U—R U—R
So, by Rice's Theorem we can prove that the language {(M) | M is

a T™ and 101 € L(M)} is undecidable.
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(Problem 5.22; 20 points) Let X = {(M,w) | M is a single-tape TM that never modifies
the portion of the tape that contains the input w}. Is X decidable? Prove your answer.
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We can try to reduce A,,, to X.

Assume that a TM Dy decides X, we can construct a decider D that
decides A, as follows:

D = "On input (M, w), where M is a T™M and w is a string:
1. Construct M’ = "On input u:
1. Move to the right of v and put $.
2. Copy w after $.
3. Simulate M on the portion of w.
4. If M accepts and u is not empty, modify any character of u
and accept; otherwise, reject.”
2. Run D on input (M’ u) for any non-empty string w.
3. If Dy accepts, reject; otherwise, accepts.”

But we've known that A, is undecidable, so X is undecidable.
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(20 points) Prove that HALT 1y <., Erm, where HALT 1y = {(M,w) | M is a TM and M
halts on w} and Ery = {{M) | M is a TM and L(M) = 0}.
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We will construct a computable function f (as defined by F' below)

such that

(M,w) € HALT,,, < f({M,w)) € E,,,.

F = "On input (M, w):

1. Construct the following machine M’.
M’ = "On input z:
1. If z # w, reject.
2. If £ =w, run M on input z.

3. If M halts, accepts; otherwise, reject.”
2. Output (M")"
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HW+#10 Problem 6

(10 points) Let ALLppa = {(A) | A is a DFA and L(A) = £*}. Prove that ALLppa € P.
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HW#10 Problem 6

We can construct a deterministic single-tape decider D that decides
ALL,,, in polynomial time as follows:

D = "On input (A), where A is a DFA with n states:
(O(1)) 1. Mark the initial state of A.
(O(|Q|™)) 2. Mark the states of A that can be arrived from
any marked states until no state can be marked.
(O(]Q])) 3. If there is any non-accepting state marked, reject;
otherwise, accepts.”

The decider D will decide ALL,,, in (O(|Q|")), so ALL,,, € P.
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HW#10 Problem 7

(10 points) Two graphs G and H are said to be isomorphic if the nodes of G may be re-
named so that it becomes identical to H. Let ISO = {(G, H) | G and H are isomorphic}.
Prove that ISO € NP, using the definition NP = J, NTIME(n*).
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HW#10 Problem 7

We can construct an nondeterministic polynomial time decider N
decides 150 as follows:

N = "On input (G, H) where G and H are undirected graphs:

1. Let m be the number of nodes of G and H. If they don’ t have
the same number of nodes, reject.

2. Nondeterministically select a permutation 7 of m elements.

3. For each pair of nodes = and y of G check that (z,y) is an edge
of G iff (m(z),m(y)) is an edge of H. If all agree, accepts. If any
differ, reject.

Stage 2 can be implemented in polynomial time nondeterministically.
Stages 1 and 3 takes polynomial time. Hence ISO € NP.
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