Theory of Computing

Introduction and Preliminaries
(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 1/42

What It Is

The central question:

What are the fundamental capabilities and limitations of

computers?

Three main areas:

% Automata Theory
% Computability Theory
@ Complexity Theory

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries

Theory of Computing 2023

2/42

Complexity Theory

Some problems are easy and some hard.
For example, sorting is easy and scheduling is hard.

The central question of complexity theory:

What makes some problems computationally hard and others
easy?’

We don't have the answer to it.

However, researchers have found a scheme for classifying
problems according to their computational difficulty.

One practical application: cryptography/security.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 3/42

Dealing with Computationally Hard Problems

Options for dealing with a computationally hard problem:

Try to simplify it (the hard part of the problem might be
unnecessary).

Settle for an approximate solution.
Find a solution that usually runs fast.

Consider alternative types of computation (such as randomized
computation).

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 4/42

Computability Theory

Alan Turing, among other mathematicians, discovered in the
1930s that certain basic problems cannot be solved by
computers.

One example is the problem of determining whether a
mathematical statement is true or false.

Theoretical models of computers developed at that time
eventually lead to the construction of actual computers.

The theories of computability and complexity are closely related.

Complexity theory seeks to classify problems as easy ones and
hard ones, while in computability theory the classification is by
whether the problem is solvable or not.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 5/42

Automata Theory

The theories of computability and complexity require a
of a computer.

Automata theory deals with the definitions and properties of
mathematical models of computation.
Two basic and practically useful models:

Finite-state, or simply finite, automaton
Context-free grammar (pushdown automaton)

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 6/42

Why You Should Learn the Subject

It will certainly broaden your knowledge of what computing is
fundamentally.

Below are a few things you may find particularly useful or
interesting:
* Regular expressions, in their original simplest form, for
describing patterns of strings/words.
Context-free grammars for describing the syntax of a
(programming) language.
® The so-called Turing machines, as the most commonly used
model for a computer.
Exemplar undecidable problems, which cannot be (perfectly)
solved by computers.
“ A proof of SAT being NP-hard, where every NP problem is
shown to be polynomially reducible to SAT.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 7/42

Sets

Set, element (member), subset, proper subset
Multiset

Description of a set

The empty set (0)

Finite set, infinite set

Union, intersection, complement

Power set

Venn diagram

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 8/42

Sets (cont.)

START-t
terrific
tundra

theory

FIGURE 0.1
Venn diagram for the set of English words starting with

(P
t

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 9/42

Sets (cont.)

END-Z
uartz
: q
. JAZZ
.
razzmatazz

FIGURE 0.2
Venn diagram for the set of English words ending with “z”

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 10 /42

Sets (cont.)

START-t END-Z START-)

topaz jazz

FIGURe 0.3
Overlapping circles indicate common elements

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023

11/42

Sets (cont.)

A B
(a) (b)
FIGURe 0.4
Diagrams for (a) AU Band (b) AN B
Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Introduction and Preliminaries

m]

5 = E E DA
Theory of Computing 2023

12/42

Sequences and Tuples

A sequence of objects is a list of these objects in some order.
Order is essential and repetition is also allowed.

Finite sequences are often called tuples. A sequence with k
elements is a k-tuple; a 2-tuple is also called a pair.

The Cartesian product, or cross product, of A and B, written as
A x B, is the set of all pairs (x, y) such that x € Aand y € B.

Cartesian products generalize to k sets, A;, As, ..., Ak, written
as A; X Ay X ... x Ax. Every element in the product is a k-tuple.

Ak is a shorthand for A x A x ... x A (k times).

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 13 /42

Functions

A function sets up an input-output relationship, where the same
input always produces the same output.

If £ is a function whose output is b when the input is a, we write
f(a) = b.

A function is also called a mapping; if f(a) = b, we say that f
maps a to b.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 14 /42

Functions (cont.)

The set of possible inputs to a function is called its domain; the
outputs come from a set called its range.

A function is onto if it uses all the elements of the range (it is
one-to-one if ...).

The notation f : D — R says that f is a function with domain
D and range R.

More notions and terms: k-ary function, unary function, binary
function, infix notation, prefix notation

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 15/42

Relations

A predicate, or property, is a function whose range is
{TRUE,FALSE}.

A predicate whose domain is A; X A, X ... X Ay is called a k-ary
relation on A1, Az, ..., Ax. When the A;'s are the same set A, it
is simply called a k-ary relation on A.

A 1-ary relation is usually called a unary relation and a 2-ary
relation is called a binary relation.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 16 /42

Equivalence Relations

An equivalence relation is a special type of binary relation that
captures the notion of two objects being equal in some sense.
A binary relation R on A is an equivalence relation if

1. R is reflexive (for every x in A, xRx),
2. R is symmetric (for every x and y in A, xRy if and only if yRx),

and
3. R is transitive (for every x, y, and z in A, xRy and yRz implies

xRz).

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 17 /42

NTU

Graphs

Undirected graph, node (vertex), edge (link), degree
Description of a graph: G = (V, E)

Labeled graph

Subgraph, induced subgraph

Path, simple path, cycle, simple cycle

Connected graph

Tree, root, leaf

Directed graph, outdegree, indegree

Strongly connected graph

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 18 /42

Graphs (cont.)

FiIGure 0.12
Examples of graphs

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU)

Introduction and Preliminaries

Theory of Computing 2023 19 /42

Graphs (cont.)

Boston

FIGURE 0.13
Cheapest nonstop air fares between various cities

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 20 /42

Graphs (cont.)

Graph H

Subgraph G
shown darker

FiIcURE 0.14
Graph G (shown darker) is a subgraph of H

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 21 /42

Graphs (cont.)

(a) (b) G

FIGURE 0.15
(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 22 /42

Graphs (cont.)

FiIGURe 0.16
A directed graph

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 23 /42

Graphs (cont.)

Ficure 0.18
The graph of the relation beats

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 24 /42

Strings and Languages

An alphabet is any finite set of symbols.

A string over an alphabet is a finite sequence of symbols from
that alphabet.

The length of a string w, written as |w|, is the number of
symbols that w contains.

The string of length 0 is called the empty string, written as €.

The concatenation of x and y, written as xy, is the string
obtained from appending y to the end of x.

A language is a set of strings.

More notions and terms: reverse, substring, lexicographic
ordering.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 25 /42

NTU

Boolean Logic

Boolean logic is a mathematical system built around the two
Boolean values TRUE (1) and FALSE (0).

Boolean values can be manipulated with Boolean operations:
negation or NOT (=), conjunction or AND (A), disjunction or
OR (V).

0A020 N 021
0A120 ov1izi -120
1A020 1V021
1A121 1v1i21

Unknown Boolean values are represented symbolically by
Boolean variables or propositions, e.g., P, Q, etc.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 26 /42

Boolean Logic (cont.)

Additional Boolean operations: exclusive or or XOR (),
equality/equivalence (<> or =), implication (—).

08020 0021 05021
0p121 0120 05121
19021 1020 15020
1e120 1121 15121

All in terms of conjunction and negation:

PVQR = —|(—|P/_|Q)
P—-Q = -PVQ

PeQ = (P=>Q)AN(QR—P)
P Q = —\(P<—>Q)

Yih-Kuen Tsay (IM.NTU)

Introduction and Preliminaries

Theory of Computing 2023

Logical Equivalences and Laws

Two logical expressions/formulae are equivalent if each of them
implies the other, i.e., they have the same truth value.
Equivalence plays a role analogous to equality in algebra.
Some laws of Boolean logic:

(Distributive) PA(QV R)=(PAQ)V(PAR)

(Distributive) PV (QAR)=(PV Q)A(PVR)

(De Morgan's) =(PV Q) = -PA-Q

(De Morgan's) =(PA Q) =-PV —=Q

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 28 /42

Definitions, Theorems, and Proofs

Definitions describe the objects and notions that we use.
Precision is essential to any definition.

After we have defined various objects and notions, we usually
make mathematical statements about them. Again, the
statements must be precise.

A proofis a convincing logical argument that a statement is
true. The only way to determine the truth or falsity of a
mathematical statement is with a mathematical proof.

A theorem is a mathematical statement proven true. Lemmas
are proven statements for assisting the proof of another more
significant statement.

Corollaries are statements seen to follow easily from other
proven ones.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 29 /42

Finding Proofs

Find proofs isn't always easy; no one has a recipe for it.

Below are some helpful general strategies:
1. Carefully read the statement you want to prove.
2. Rewrite the statement in your own words.
3. Break it down and consider each part separately.
For example, P <= Q@ consists of two parts: P — Q (the
forward direction) and Q — P (the reverse direction).
4. Try to get an intuitive feeling of why it should be true.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 30 /42

Tips for Producing a Proof

A well-written proof is a sequence of statements, wherein each
one follows by simple reasoning from previous statements in the
sequence.
Tips for producing a proof:
Be patient. Finding proofs takes time.
Come back to it. Look over the statement, think about it, leave
it, and then return some time later.
Be neat. Use simple, clear text and/or pictures; make it easy for
others to understand.
Be concise. Emphasize high-level ideas, but be sure to include
enough details of reasoning.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 31 /42

An Example Proof

Theorem
For any two sets A and B, AUB = AN B.

Proof. We show that every element of AU B is also an element of
AN B and vice versa.

Forward (x € AUB — x € AN B):
xe AUB
— x¢AUB , def. of complement
— x¢ Aand x ¢ B , def. of union
— x€Aand xe B , def. of complement
— x€ANB , def. of intersection

Reverse (x €t ANB — x € AUB): ...

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 32 /42

Another Example Proof

Theorem

In any graph G, the sum of the degrees of the nodes of G is an even
number.

Proof.

Every edge in G connects two nodes, contributing 1 to the
degree of each.

Therefore, each edge contributes 2 to the sum of the degrees of
all the nodes.

If G has e edges, then the sum of the degrees of the nodes of G
is 2e, which is even.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 33 /42

Another Example Proof (cont.)

Wy

sum = 24242 sum

. 24+-3+4+43+2

14

Il

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 34 /42

Another Example Proof (cont.)

Every time an edge is added,

the sum increases by 2.

Source: [Sipser 2006]

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 35 /42

Types of Proof

Proof by construction:
prove that a particular type of object exists, by showing how to
construct the object.

Proof by contradiction:

prove a statement by first assuming that the statement is false
and then showing that the assumption leads to an obviously
false consequence, called a contradiction.

Proof by induction:
prove that all elements of an infinite set have a specified
property, by exploiting the inductive structure of the set.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 36 /42

Proof by Construction

Theorem
For each even number n greater than 2, there exists a 3-regular graph

with n nodes.

Proof. Construct a graph G = (V, E) with n (= 2k > 2) nodes as
follows.

Let V be {0,1,...,n— 1} and E be defined as
E = {{i,i+1}|for0<i<n-—-2}U

{{n—-1,0}} U
{{i,i+n/2} |for0<i<n/2—1}.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 37 /42

Proof by Contradiction

Theorem
V2 is irrational.

Proof. Assume toward a contradiction that v/2 is rational, i.e.,
V2 = % for some integers m and n, which cannot both be even.

V2 = - , from the assumption
m/2=m , multipl. both sides by n
2n® = m? , square both sides

m is even . m? is even

2n? = (2k)? = 4k?> , from the above two

n? = 2k? , divide both sides by 2
n is even , n?is even

Now both m and n are even, a contradiction.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 38 /42

Example: Home Mortgages

P: the principle (amount of the original loan).

I: the yearly interest rate.

Y: the monthly payment.

M: the monthly multiplier = 1+ //12.

P;: the amount of loan outstanding after the t-th month; Py = P
and Pk+1 = PkM -Y.

Theorem
For each t > 0,

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 39 /42

Proof by Induction

Theorem
For eacht > 0,

P, = PM! — Y(-———).

Proof. The proof is by induction on t.

Basis: When t =0, PM® — Y(M=1) = p = P,

M-1

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries

Theory of Computing 2023 40 /42

Proof by Induction (cont.)

Induction step: When t = k+ 1 (k > 0),

Pr+1
= {definition of P;}
PcM—Y

= {the induction hypothesis}
k_
(PM* =Y (35))M =Y
= {distribute M and rewrite Y}
k+1_ _
PMK — Y (Mo=M) — Y (D)
= {combine the last two terms}

PMk+L _ Y(M/\k;ifl)

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 41 /42

Structural Induction

Structural induction is a generalization of mathematical
induction on the natural numbers.

It is used to prove that some proposition P(x) holds for all x of
some sort of recursively/inductively defined structure such as
binary trees.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 42 /42

Structural Induction

Structural induction is a generalization of mathematical
induction on the natural numbers.

It is used to prove that some proposition P(x) holds for all x of
some sort of recursively/inductively defined structure such as
binary trees.

Proof by structural induction:

1. Base case: the proposition holds for all the minimal structures.
2. Inductive step: if the proposition holds for the immediate
substructures of a certain structure S, then it also holds for S.

Yih-Kuen Tsay (IM.NTU) Introduction and Preliminaries Theory of Computing 2023 42 /42

	Overview
	Mathematical Notions and Terminology
	Definitions, Theorems, and Proofs
	Types of Proof

