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Introduction

A reduction is a way of converting one problem into another
problem in such a way that a solution to the second problem can
be used to solve the first problem.

If a problem A reduces (is reducible) to another problem B, we
can use a solution to B to solve A.

Reducibility says nothing about solving A or B alone, but only
about the solvability of A in the presence of a solution to B.
Reducibility is the primary method for proving that problems are
computationally unsolvable.

Suppose that A is reducible to B. If B is decidable, then A is
decidable; equivalently, if A is undecidable, then B is
undecidable.
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The Halting Problem

HALTtv = {(M,w) | M is a TM and M halts on w}.
Theorem (5.1)
HALTr\ is undecidable.

The idea is to reduce the acceptance problem Aty (shown to be
undecidable) to HALT 1.
Assume toward a contradiction that a TM R decides HALT 1.

We could then construct a decider S for Ay as follows.
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The Halting Problem (cont.)

S = "On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.

4. If M has accepted, . if M has rejected, reject.”
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Undecidable Problems

Ery = {(M) | MisaTM and L(M) = (}.
Theorem (5.2)
Etwn is undecidable.

Assuming that a TM R decides Ery, we construct a decider S
for Aty as follows.
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Undecidable Problems (cont.)

S = "“On input (M, w):
1. Construct the following TM M.
M; = "On input x:

1.1 If x # w, reject.
1.2 If x=w, run M on input w and if M accepts w."

2. Run R on input (M).
3. If R accepts, reject; if R rejects,
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Undecidable Problems (cont.)

REGULARr\v = {(M) | M is a TM and L(M) is regular}.

Theorem (5.3)
REGULART\ is undecidable.

Assuming that a TM R decides REGULART\;, we construct a
decider S for Aty as follows.
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Undecidable Problems (cont.)

S = “On input (M, w):
1. Construct the following TM M.
M, = “On input x:
1.1 If x has the form 071",

1.2 If x does not have this form, run M on input w and if M
accepts w."”
2. Run R on input (M,).
3. If R accepts, . if R rejects, reject.”

Note: if M does not accept w, then L(M,) = {0"1" | n > 0}, which
is not regular; if M accepts w, then L(M,) = {0, 1}*, which is
regular.
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Undecidable Problems (cont.)

EQTM = {<M1, M2> ‘ Ml and M2 are TMs and L(Ml) = L(MQ)}

Theorem (5.4)
EQr\ is undecidable.

Assume that a TM R decides EQtyy.
We construct a decider S for Ety; as follows.
S = "On input (M):
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, . if R rejects, reject.”
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Rice’s Theorem

Theorem

Any “nontrivial” property about the languages recognized by Turing
machines is undecidable.

Note 1: the theorem considers only properties about languages,
i.e., properties that do not distinguish equivalent Turing machine
descriptions.

Note 2: a property is nontrivial if it is satisfied by some, but not
all, Turing machine descriptions.
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Computation Histories

Definition (5.5)
An accepting computation history for M on w is a sequence of
configurations Cy, Gy, - - - , C;, where

1. (i is the start configuration,

2. C; is an accepting configuration, and

3. Gyields Ci11, 1 < i <[ —1.
A rejecting computation history for M on w is defined similarly,
except that C; is a rejecting configuration.

Computation histories are finite sequences.

Deterministic machines have at most one computation history
on any given input.
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Linear Bounded Automata

Definition (5.6)

A linear bounded automaton (LBA) is a restricted type of Turing
machine wherein the tape head is not permitted to move off the
portion of the tape containing the input.

So, an LBA is a TM with a limited amount of memory. It can
only solve problems requiring memory that can fit within the
tape used for the input.
(Note: using a tape alphabet larger than the input alphabet allows
the available memory to be increased up to a constant factor.)
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Linear Bounded Automata (cont.)

control
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FIGURE 5.7
Schematic of a linear bounded automaton

Source: [Sipser 2006]
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Linear Bounded Automata (cont.)

Despite their memory constraint, LBAs are quite powerful.

Lemma (5.8)

Let M be an LBA with q states and g symbols in the tape alphabet.
There are exactly qng" distinct configurations of M for a tape of
length n.
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Decidable Problems about LBAs

Arga = {{M,w) | M is an LBA that accepts w}.

Theorem (5.9)

ALBa Is decidable.

L = “On input (M, w), an encoding of an LBA M and a string
w:
1. Simulate M on input w for gng” steps or until it halts.
2. If M has halted, if it has accepted and reject if it has
rejected. If M has not halted, reject.”
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Undecidable Problems about LBAs

Eiga = {(M) | M is an LBA where L(M) = 0}.

Theorem (5.10)

Eiga Is undecidable.

Assuming that a TM R decides E;ga, we construct a decider S
for Aty as follows.
S = "On input (M, w), an encoding of a TM M and a string w:

1. Construct an LBA B from (M, w) that, on input x, decides

whether x is an accepting computation history for M on w.
2. Run R on input (B).
3. If R rejects, ; if R accepts, reject.”
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& Cy Cly C

FIGURE 5.11
A possible input to B

Source: [Sipser 2006]

Three conditions of an accepting computation history:
C; is the start configuration.
C, is an accepting configuration.
C; yields Ciyq, for every i, 1 < < |.
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Undecidable Problems about LBAs (cont.)

B
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FIGURE 5.12
BA B checking a TM computation history

Source: [Sipser 2006]
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Undecidable Problems about CFGs

AlLLcpc = {(G) | G is a CFG and L(G) = £*}.

Theorem (5.13)
ALLcrg Is undecidable.

For a TM M and an input w, we construct a CFG G (by first
constructing a PDA) to generate all strings that are not
accepting computation histories for M on w.

That is, G generates all strings if and only if M does not accept
w.

If ALLcre were decidable, then Aty would be decidable.
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Undecidable Problems about CFGs (cont.)

The PDA for recognizing computation histories that are not
accepting works as follows.

The input is regarded as a computation history of the form:

#OHCHCGHCH - #C#

where CF denotes the reverse of C;.
The PDA nondeterministically chooses to check if one of the
following conditions holds for the input:

C; is not the start configuration.

C; is not an accepting configuration.

C; does not yield Cjt1, for some i, 1 </ < /.
It also accepts an input that is not in the proper form of a
computation history.
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Cy CR Cs CR Ci

FIGURE 5.14
Every other configuration written in reverse order

Source: [Sipser 2006]
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The Post Correspondence Problem

Consider a collection of dominos such as follows:

e [ 15 1))

A match is a list of these dominos (repetitions permitted) where
the string of symbols on the top is the same as that on the
bottom. Below is a match:

S P
R
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The Post Correspondence Problem (cont.)

The Post correspondence problem (PCP) is to determine
whether a collection of dominos has a match.

More formally, an instance of the PCP is a collection of dominos:

- (14} [5] (8]

A match is a sequence iy, p, - -+ , Iy such that

til t,2 A t’/ = bllbl2 A b,/

PCP = {(P) | P is an instance of the Post correspondence
problem with a match}.
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Undecidability of the PCP

Theorem (5.15)
PCP is undecidable

The proof is by reduction from Aty via accepting computation
histories.

From any TM M and input w we can construct an instance P
where a match is an accepting computation history for M on w.

Assume that a TM R decides PCP.

A decider S for Ay constructs an instance of the PCP that has
a match if and only if M accepts w, as follows.
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Undecidability of the PCP (cont.)

# ]
- Add FHQoWiWs - - - Wy s | b1 |’

—

2. Forevery a,b el and every q,r € Q where g # Greject,
if 5(q,a) = (r, b, R), add % .
3. Forevery a,b,c €I and every q,r € Q where g # Greject,
) B cqa
if6(q,a) = (r, b, L), add [ b }
a
4. For every ac I, add {a}'
) ]
5. Add |——| and :
5[5
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Undecidability of the PCP (cont.)

A start configuration (by Part 1):

‘#\#7
#d 01 00

Suppose §(qo, 0) = (g7,2, R). With Parts 2-5, the match may be

extended to:
#1% 01110 O#H\WT
#q 0100 2 G7111010
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Undecidability of the PCP (cont.)

6. For every a €T, add {aqmept] and [qaccepta}

qaccept qaccept
s e
# 2 1G9 0 2 #F12111G1 217 # da

qaccept##
7. Add {# ]

#qa##‘
# qu FH#
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Undecidability of the PCP (cont.)

. t
To ensure that a match starts with 1} ,

. h] [k k
S converts the collection {{bl} ) _bz} oo |:bk:| } to
*t *ty *t | U i *©
*bl* ) bl* ) b2* ] ) ) bk* ) O

where
*U KUp % Uy % Uz %+« % Up
ux = Uy % Up *x Uz k-« % Upkx .
*Ux =

Uy * Up & U3z X -+« % Upk
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Computable Functions

A Turing machine computes a function by starting with the
input to the function on the tape and halting with the output of

the function on the tape.

Definition (5.17)

A function f : £* — ¥* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

For example, all usual arithmetic operations on integers are
computable functions.

Computable functions may be transformations of machine
descriptions.
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Mapping (Many-One) Reducibility
Definition (5.20)

Language A is mapping reducible (many-one reducible) to language
B, written A <,, B, if there is a computable function f : ¥* — ¥*,
where for every w, w € A <= f(w) € B.

w £ (w) yes/no
%| f M B >

(computable func.)
M A

This provides a way to convert questions about membership
testing in A to membership testing in B.
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Mapping (Many-One) Reducibility (cont.)

FIGURE 5.21
Function f reducing A to B

Source: [Sipser 2006]
The function f is called the reduction of A to B.
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Reducibility and Decidability

Theorem (5.22)
If A <,, B and B is decidable, then A is decidable.

Let M be a decider for B and f a reduction from A to B. A
decider N for A works as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Corollary (5.23)
If A <,, B and A is undecidable, then B is undecidable.

Note: (PAQ) =+ R=P—=(Q—=>R)=P—=(-R—= Q)=
(PA-R) = —Q
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Reducibility and Decidability (cont.)

Theorem
HALTr\ is undecidable.

We show that Aty <., HALT 1y, i.e., a computable function f
exists (as defined by F below) such that

<M, W> € Ay — f((M, W>) € HALT 1.

F = "On input (M, w):
1. Construct the following machine M'.
M’ = “On input x:
1.1 Run M on x.

1.2 If M accepts,
1.3 If M rejects, enter a loop.

2. Output (M"; w)."
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Reducibility and Recognizability
Theorem (5.28)

If A<,, B and B is Turing-recognizable, then A is
Turing-recognizable.

Corollary (5.29)

If A<,, B and A is not Turing-recognizable, then B is not
Turing-recognizable.

Corollary

IfA<,, B (ie, A<, B)and A is not co-Turing-recognizable, then
B is not co-Turing-recognizable.

Note: “A is not co-Turing-recognizable” is the same as “A is not

Turing-recognizable” .
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Reducibility and Recognizability (cont.)

Theorem (5.30 Part One)

EQry\ is not Turing-recognizable.

We show that Aty reduces to EQry, i.e., Aty reduces to
EQm.

Since Aty is not Turing-recognizable, EQry; is not
Turing-recognizable.

F = “On input (M, w):
1. Construct the following two machines M; and M.
M1 ="On any input: reject.”
M2 ="0On any input: Run M on w. If it accepts,
2. Output <M1, M2>.”
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Reducibility and Recognizability (cont.)

Theorem (5.30 Part Two)

EQry is not co-Turing-recognizable.

We show that Aty reduces to EQry.

Since Aty is not co-Turing-recognizable, EQry; is not
co-Turing-recognizable.

G = "On input (M, w):
1. Construct the following two machines M; and M.
M1 ="On any input:

M2 ="On any input: Run M on w. If it accepts,
2. Output <M1, M2>.”
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