
Theory of Computing [Compiled on May 1, 2023] Spring 2023

Suggested Solutions to Midterm Problems

1. Let L = {w ∈ {0, 1}∗ | w does not contain 011 or 10 as a substring}.

(a) Draw the state diagram of a DFA, with as few states as possible, that recognizes
L. The fewer states your DFA has, the more points you will be credited for this
problem.

Solution.

qϵ

q0

q1

q01

qf

0

1

0

1

1

0

0, 1

0, 1

2

(b) Translate the DFA in (a) systematically to an equivalent context-free grammar (using
the procedure discussed in class).

Solution.
Rε → 0R0 | 1R1 | ε
R0 → 0R0 | 1R01 | ε
R1 → 0Rf | 1R1 | ε
R01 → 0Rf | 1Rf | ε
Rf → 0Rf | 1Rf

2

2. Let L = {w ∈ {0, 1}∗ | w contains 110 as a substring or ends with 1}.

(a) Draw the state diagram of an NFA, with as few states as possible, that recognizes
L. The fewer states your NFA has, the more points you will be credited for this
problem.

Solution.

q0 q1 q2 q3

0, 1

1 1 0

0, 1

1

2

(b) Convert the preceding NFA systematically into an equivalent DFA (using the proce-
dure discussed in class). Do not attempt to optimize the number of states, though
you may omit the unreachable states.

Solution.

{q0} {q0, q1}

{q0, q3}

{q0, q1, q2}

{q0, q1, q3} {q0, q1, q2, q3}

0

1

0

1

0

1

0

1

0

1

0
1

2

3. Let the rotational closure of language A be RC (A) = {yx | xy ∈ A}.

(a) Show that, for any language A, we have RC (A) = RC (RC (A)) (i.e., rotational
closure, as an operation/function, is idempotent).

Solution. First of all, it is obvious that, for any language A, we have A ⊆ RC (A)
(by taking x or y in the definition of RC to be the empty string). Therefore, for any
language A, we have RC (A) ⊆ RC (RC (A)) readily. It remains to be proven that
RC (RC (A)) ⊆ RC (A). For this, we let Σ be the alphabet and show that, for every
w ∈ Σ∗, if w ∈ RC (RC (A)), then w ∈ RC (A).

Suppose w ∈ RC (RC (A)). Let w = yx for some x, y ∈ Σ∗ such that xy ∈ RC (A).
For xy ∈ RC (A) to hold, either xy = x1x2y and x2yx1 ∈ A for some x1, x2 ∈ Σ∗ or
xy = xy1y2 and y2xy1 ∈ A for some y1, y2 ∈ Σ∗. In the first case where x2yx1 ∈ A,
we have yx1x2 ∈ RC (A) and hence w = yx = yx1x2 ∈ RC (A); analogously, for the
second case. 2

(b) Show that the class of regular languages is closed under rotational closure.

Solution. Let A be an arbitrary regular language and MA = (QA,Σ, δA, qA, FA) be
a DFA that recognizes A. To prove that RC (A) is also regular, we construct from
MA (as a building block) an NFA N that recognizes RC (A). We first elaborate on
the basic ideas and then give a formal definition for N .

Suppose N is given an input w = yx for some x, y ∈ Σ∗ such that xy ∈ A. Let qx
be the state in which MA ends up after reading x. Starting from qx, MA should end
at some final state after reading y. For N to accept w, we let N simulate MA from
qx and, after reading y and reaching a final state, make an epsilon transition (which
needs to be added to MA) to the initial state qA of MA and continue simulating MA

with the rest of the input. If N eventually ends up at qx, then the input w is of the
correct form of yx such that xy ∈ A. Any state of MA may act as qx. For N to start

2

and finish the simulation at the same state, we need |QA| copies of MA, one for each
state in QA, with an epsilon transition added from every final state to the initial
state. To start the simulation of MA from any state, N has an epsilon transition
from its initial state to every state of MA.

So, N = (QA ×QA ∪ {q0},Σε, δ, q0,
⋃

q∈QA
{(q, q)}), where

δ(q0, ε) =
⋃

q∈QA
{(q, q)}

δ((q1, q2), a) = {(q, q2) | δA(q1, a) = q} q1, q2 ∈ QA and a ∈ Σ
δ((q1, q2), ε) = {(qA, q2)} q1 ∈ FA and q2 ∈ QA

δ(q, a) = ∅ otherwise

2

4. We define the avoids operation for languages A and B to be

A avoids B = {w | w ∈ A and w doesn’t contain any string in B as a substring}.

Prove that the class of regular languages is closed under the avoids operation.

Solution. The definition of A avoids B may be restated equivalently as the set difference
between A and {w | w contains a string in B as a substring}. The set difference between
two languages C and D, denoted C\D, equals C ∩D. If both C and D are regular, then
C\D is also regular, as the class of regular languages is closed under intersection and
complementation.

For a regular language B, the set {w | w contains a string in B as a substring} can be
expressed as Σ∗RBΣ

∗, where Σ is the alphabet and RB is a regular expression for B,
and hence is also regular. So, the class of regular languages is closed under the avoids
operation. 2

5. Consider the following CFG discussed in class, where for convenience the variables have
been renamed with single letters.

E → E + T | T
T → T × F | F
F → (E) | a

(a) Give the (leftmost) derivation and parse tree for the string (a+ a× a).

Solution.

3

The leftmost derivation The parse tree

E ⇒ T
⇒ F
⇒ (E)
⇒ (E + T)
⇒ (T + T)
⇒ (F + T)
⇒ (a+ T)
⇒ (a+ T × F)
⇒ (a+ F × F)
⇒ (a+ a× F)
⇒ (a+ a× a)

E

T

F

)

E

T

F

a×

T

F

a+

E

T

F

a(

2

(b) Convert the grammar into an equivalent PDA (that recognize the same language).
Solution.

q0

qE

ql

qa

q1 q2

q6 q5

q3

q4

ε, ε → $

ε, ε → E

ε, $ → ε

+, + → ε
×, × → ε
(, (→ ε
),) → ε
a, a → ε
ε, E → T
ε, T → F
ε, F → a

ε, E → T

ε, F →)

ε, T → F

ε, ε → +

ε, ε → E

ε, ε → E

ε, ε → (

ε, ε → ×
ε, ε → T

2

6. Draw the state diagram of a PDA that recognizes the following language: {w ∈ {0, 1}∗ |
w has twice as many 1s as 0s}. Please make the PDA as simple and deterministic as
possible and explain the intuition behind the PDA.

4

Solution. A PDA that recognizes the language is shown below. The basic idea is to cancel
out every two 1s by a subsequent 0 or the other way around, using the stack to remember
outstanding (yet-to-be-cancelled-out) occurrences of 0 or 1. The case when a 0 is read
with a 1 outstanding on the stack is effectively the same as a 0 immediately followed by
a 1, leaving a 0 on the stack to be cancelled out by a subsequent 1. So, when reading a 0,
the PDA pushes two 0s onto the stack, pops two 1s from the stack, or (to allow the case
when a 0 is read with a 1 outstanding on the stack) pops a 1 from and pushes a 0 onto
the stack. When reading a 1, the PDA pushes a 1 onto the stack or pops a 0 (pushed
earlier onto the stack waiting for a 1 to be read) from the stack.

q0 q1 q2

q3

ε, ε → $

1, ε → 1
1, 0 → ε

0, ε → 0
0, 1 → ε

ε, $ → ε

ε, ε → 0
ε, 1 → ε

The PDA above is simple enough, but highly nondeterministic. For instance, while there
is an outstanding 0 on the stack, the PDA may choose to push a 1 (rather than correctly
cancelling out the 0) when reading a 1, even though this choice will turn out to be futile.
The following is a more deterministic PDA for the same language.

q0 q1 q2

q3 q4 q5

q6

ε, ε → $ ε, $ → ε

1, 0 → ε

0, 1 → ε

1, $ → $
1, 1 → 1

0, $ → $
0, 0 → 0

ε, 1 → ε

ε, $ → $

ε, ε → 0

ε, ε → 0

ε, ε → 1

2

5

7. For two given languages A and B, define A ⋄ B = {xy | x ∈ A and y ∈ B and |x| = |y|}.
Prove that, if A and B are regular, then A ⋄ B is context-free. (Hint: construct a PDA
where the stack is used to ensure that x and y are of equal length.)

Solution. Given finite-state automata NA and NB respectively for A and B, the basic
idea is to construct a PDA for recognizing A ⋄B that first simulates NA and then nonde-
terministically switches to simulate NB. The PDA counts the number of symbols while
simulating NA by pushing a marker onto the stack whenever it reads an input symbol and
it later cancels out the markers with the input symbols while simulating NB.

Suppose NA = (QA,Σ, δA, qA, FA) and NB = (QB,Σ, δB, qB, FB), assuming A and B have
the same alphabet. We construct the PDA M = (Q,Σ,Γ, δ, qstart, {qaccept}) for A ⋄ B as
follows:

• Q = {qstart, qaccept} ∪QA ∪QB, where qstart, qaccept ̸∈ QA ∪QB.

• Γ = {x, $}.
• δ is defined as follows.

δ(qstart, ε, ε) = {(qA, $)}
δ(q, a, ε) = {(q′, x) | q′ ∈ δA(q, a)} q ∈ QA and a ̸= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δA(q, ε)} q ∈ QA

δ(q, ε, ε) = {(qB, ε)} q ∈ FA

δ(q, a, x) = {(q′, ε) | q′ ∈ δB(q, a)} q ∈ QB and a ̸= ε
δ(q, ε, ε) = {(q′, ε) | q′ ∈ δB(q, ε)} q ∈ QB

δ(q, ε, $) = {(qaccept, ε)} q ∈ FB

δ(q, a, t) = ∅ otherwise

It should be clear that L(M) = A ⋄B; we omit the detailed proof. 2

8. Prove by induction that, if G is a CFG in Chomsky normal form, then for any string
w ∈ L(G) of length n ≥ 1, exactly 2n− 1 steps are required for any derivation of w.

Solution. The proposition still holds even if we include all other strings not in L(G) that
can be derived from non-start symbols. We will prove this stronger variant by induction
on n, the length of an arbitrary nonempty string w. The strengthening in fact will make
the inductive proof easier, as we will have a stronger induction hypothesis for the inductive
step.

Base case (|w| = 1): The only way to produce a string of length 1 is by applying at the
beginning a rule of the form A → a, which constitutes a one-step derivation.

Inductive step (|w| = n > 1): To produce a string of length larger than one, one must
first apply a rule of the form A → BC, where B and C are non-start symbols. Suppose
the B part eventually produces a string x of length l and the C part a string y of length
m such that xy = w and l +m = n. From the induction hypothesis, these two parts of
derivation take 2l − 1 and 2m − 1 steps, respectively. So, the derivation of a string of
length n requires 1 + (2l − 1) + (2m− 1) = 2(l +m)− 1 = 2n− 1 steps. 2

9. Let A be the language of all palindromes over {0, 1} with equal numbers of 0s and 1s.
Prove, using the pumping lemma, that A is not context free. (Note: a palindrome is a
string that reads the same forward and backward.)

Solution. We take s to be 1p0p0p1p, where p is the pumping length, and show that s cannot
be pumped. There are basically three ways to divide s into uvxyz such that |vy| > 0 and
|vxy| ≤ p:

6

Case 1: vxy falls (entirely) within the substring 1p0p. No matter what strings v and y get
from the division, when we pump down (i.e., i = 0), we will lose some 1s or 0s (or both)
in the resulting string s′. If we lose some 1s, then there will not be a sufficient number of
1s to match the 1p in the suffix 0p1p and s′ is on longer a palindrome. If all 1s remain,
then we must lose some 0s and there will be fewer 0s than 1s in s′.

Case 2: vxy falls within 0p0p. No matter what strings v and y get from the division, when
we pump down (i.e., i = 0), there will be fewer 0s than 1s in the resulting string.

Case 3: vxy falls within 0p1p. This is analogous to Case 1.

2

10. Let A = {wtwR | w, t ∈ {0, 1}∗ and |w| = |t|}, where wR is the reverse of w. Prove that
A is not context free.

Solution. We take s to be 1p0p(01)p0p1p, where p is the pumping length, and show that
s cannot be pumped. Note that s indeed is of the form wtwR with w = 1p0p, t = (01)p,
and |w| = 2p = |t|. Note also that the (2p + 1)-th symbol of s is a 0, while the last
(2p+1)-th symbol is a 1; similarly, the (2p+2)-th symbol is a 1, while the last (2p+2)-th
symbol is a 0. Each of the two pairs of symmetrical positions contain different symbols
and are sufficiently far apart, so if we pump up s in between the symmetrical positions
particularly, the resulting string becomes longer and will not be of the form wtwR with
|w| = |t|. There are basically five ways to divide s into uvxyz such that |vy| > 0 and
|vxy| ≤ p and we exam each of them below.

Case 1: vxy falls (entirely) within the substring 1p0p. If either v or y saddles on the
middle point and contains both 1 and 0, then when we pump down, the first p symbols
will contain some trailing 0s and cannot be the reverse of 1p at the end of the resulting
string (which is of length at least 3p). Otherwise, either v contains some 1s but no 0s or
both v and y contain only 0s. In the first case, when we pump up, the first 2p symbols will
have more 1s than 0s and hence cannot be the reverse of 0p1p at the end of the resulting
string (which is of length greater than 6p). In the second case, when we pump up, the
(2p+1)-th symbol will remain a 0 and the last (2p+1)-th symbol will also remain a 1 and
hence the resulting string (of length greater than 6p) cannot be of the form wtwR (with
w of length at least 2p+ 1).

Case 2: vxy falls within 0p(01)
p
2 . In this case, no matter what v and y contain, when we

pump up, the (2p + 1)-th symbol will remain a 0, while the last (2p + 1)-th symbol will
remain a 1, and hence the resulting string (of length greater than 6p) cannot be of the
form wtwR (with w of length at least 2p+ 1).

Case 3: vxy falls within (01)p. This is analogous to Case 2.

Case 4: vxy falls within (01)
p
2 0p. This case is a bit more subtle and is further divided into

five subcases:

(a) both v and y are within (01)
p
2 . When we pump up, the (2p + 1)-th symbol will

remain a 0 and the last (2p + 1)-th symbol will remain a 1 and hence the resulting
string (of length greater than 6p) cannot be of the form wtwR (with w of length at
least 2p+ 1).

(b) v is within (01)
p
2 and y saddles on the middle point. The same argument for Sub-

case (a) applies, when we pump up.

(c) v is within (01)
p
2 and y is within 0p. If y is nonempty, then when we pump up (i = 2),

the last (2p+2)-th symbol will become a 0, while the (2p+2)-th symbol will remain

7

a 1; otherwise (y is empty), when we pump up, the same argument for Subcase (a)
applies.

(d) v saddles on the middle point and y is within 0p. This is analogous to Subcase (c).

(e) both v and y are within 0p. This is also analogous to Subcase (c).

Case 5: vxy falls within 0p1p. This is analogous to Case 4(c).

2

Appendix

• A context-free grammar is in Chomsky normal form if every rule is of the form

A → BC or
A → a

where a is any terminal and A, B, and C are any variables—except that B and C may
not be the start variable. In addition,

S → ε

is permitted if S is the start variable.

• (Pumping Lemma for Context-Free Languages)

If A is a context-free language, then there is a number p such that, if s is a string in A
and |s| ≥ p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

1. for each i ≥ 0, uvixyiz ∈ A,

2. |vy| > 0, and

3. |vxy| ≤ p.

8

