
Theory of Computing 2024: Context-Free Languages

(Based on [Sipser 2006, 2013])

Yih-Kuen Tsay

April 1, 2024

1 Context-Free Grammars

Introduction

• We have seen languages that cannot be described by any regular expression (or recognized by any finite
automaton).

• Context-free grammars are a more powerful method for describing languages; they were first used in
the study of natural languages.

• They play an important role in the specification and compilation of programming languages.

• The collection of languages associated with context-free grammars are called the context-free languages
(CFLs).

Context-Free Grammars

• A context-free grammar (CFG) consists of a collection of substitution rules (or productions) such as:

A → 0A1
A → B
B → #

or alternatively
A → 0A1 | B
B → #

• Symbols A and B here are called variables; the other symbols 0, 1, and # are called terminals.

• A grammar describes a language by generating each string of the language through a derivation.

For example, the above grammar generates the string 000#111:

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111.

/* Note that in a derivation the variable A may become, according to the production A → 0A1 | B (which
has a single A on the left-hand side), either 0A1 or B, the choice of which is independent of whatever comes
before or after A, i.e., independent of the context of A. This is why such grammars are called context-free
grammars.

There are also context-sensitive grammars, where the left-hand side and the right-hand side of a produc-
tion may be surrounded by a context of variables and terminals, in the form of αAβ → αγβ (where γ must
be non-empty except when A is the start variable/symbol). Context-sensitive grammars (with the additional
power of enforcing contexts in a derivation) are more expressive than context-free grammars.

The most general kind of grammars is an unrestricted grammar, which only requires the left-hand of a
production rule to be non-empty. */

1

Context-Free Grammars (cont.)
The preceding derivation of 000#111 may be represented pictorially as a parse tree:

Source: [Sipser 2006]

An Example CFG

⟨SENTENCE⟩ → ⟨NOUN-PHRASE⟩⟨VERB-PHRASE⟩
⟨NOUN-PHRASE⟩ → ⟨CMPLX-NOUN⟩ |

⟨CMPLX-NOUN⟩⟨PREP-PHRASE⟩
⟨VERB-PHRASE⟩ → ⟨CMPLX-VERB⟩ |

⟨CMPLX-VERB⟩⟨PREP-PHRASE⟩
⟨PREP-PHRASE⟩ → ⟨PREP⟩⟨CMPLX-NOUN⟩
⟨CMPLX-NOUN⟩ → ⟨ARTICLE⟩⟨NOUN⟩
⟨CMPLX-VERB⟩ → ⟨VERB⟩ | ⟨VERB⟩⟨NOUN-PHRASE⟩

⟨ARTICLE⟩ → a | the
⟨NOUN⟩ → boy | girl | flower
⟨VERB⟩ → touches | likes | sees
⟨PREP⟩ → with

An Example CFG (cont.)

⟨SENTENCE⟩ ⇒ ⟨NOUN-PHRASE⟩⟨VERB-PHRASE⟩
⇒ ⟨CMPLX-NOUN⟩⟨VERB-PHRASE⟩
⇒ ⟨ARTICLE⟩⟨NOUN⟩⟨VERB-PHRASE⟩
⇒ the ⟨NOUN⟩⟨VERB-PHRASE⟩
⇒ the boy ⟨VERB-PHRASE⟩
⇒ the boy ⟨CMPLX-VERB⟩
⇒ the boy ⟨VERB⟩⟨NOUN-PHRASE⟩
⇒ the boy sees ⟨NOUN-PHRASE⟩
⇒ the boy sees ⟨ARTICLE⟩⟨NOUN⟩
⇒ the boy sees a ⟨NOUN⟩
⇒ the boy sees a flower

Definition of a CFG

Definition 1 (2.2). A context-free grammar is a 4-tuple (V,Σ, R, S):

2

1. V is a finite set of variables.

2. Σ (Σ ∩ V = ∅) is a finite set of terminals.

3. R is a finite set of rules, each of the form A → w, where A ∈ V and w ∈ (V ∪ Σ)∗.

4. S ∈ V is the start symbol.

• If A → w is a rule, then uAv yields uwv, written as uAv ⇒ uwv.

• We write u ⇒∗ v if u = v or a sequence u1, u2, . . . , uk (k ≥ 0) exists such that u ⇒ u1 ⇒ u2 ⇒ . . . ⇒
uk ⇒ v.

• The language of the grammar is {w ∈ Σ∗ | S ⇒∗ w}.

Example CFGs

• G3 = ({S}, {(,)}, R, S), where R contains

S → (S) | SS | ε.

L(G3) is the language of all strings of properly nested parentheses such as ()(()).

• G4 = ({⟨EXPR⟩, ⟨TERM⟩, ⟨FACTOR⟩}, {a,+,×, (,)}, R, ⟨EXPR⟩), where R contains

⟨EXPR⟩ → ⟨EXPR⟩+ ⟨TERM⟩ | ⟨TERM⟩
⟨TERM⟩ → ⟨TERM⟩ × ⟨FACTOR⟩ | ⟨FACTOR⟩

⟨FACTOR⟩ → (⟨EXPR⟩) | a

L(G4) is the language of algebraic expressions with the operations + and × and a constant a such as
(a+ a)× a.

Example CFGs (cont.)

Source: [Sipser 2006]

3

Designing CFGs

• If the CFL can be broken into simpler pieces, then break it and construct a grammar for each piece.

• If the CFL happens to be regular, then first construct a DFA and convert it into an equivalent CFG.

• Some CFLs contain strings with two substrings that correspond to each other in some way. Rules of
the form R → uRv are useful for handling this situation.

• In more complex CFLs, the strings may contain certain structures that appear recursively as part of
other structures. To achieve this effect, place the variable generating the structure in the location of
the rules corresponding to where that structure may recursively appear.

From DFAs to CFGs

• Given a DFA A = (Q,Σ, δ, q0, F), we can construct a CFG G = (V,Σ, R, S) as follows such that
L(G) = L(A).

• Make a variable Ri for each state qi ∈ Q.

• Add the rule Ri → aRj if δ(qi, a) = qj .

• Add the rule Ri → ε if qi ∈ F .

• Make R0 (which corresponds to q0) the start symbol.

Ambiguity

• Consider another grammar G5 for algebraic expressions:

⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ |
⟨EXPR⟩ × ⟨EXPR⟩ |
(⟨EXPR⟩) | a

• G5 generates the string a+ a× a in two different ways.

Source: [Sipser 2006]

Ambiguity (cont.)

• A derivation of a string in a grammar is a leftmost derivation if at every step the leftmost remaining
variable is the one replaced.

• A parse tree represents one unique leftmost derivation.

Definition 2 (2.7). A string is derived ambiguously in a grammar if it has two or more different leftmost
derivations (or parse trees). A grammar is ambiguous if it generates some string ambiguously.

4

Chomsky Normal Form

• When working with context-free grammars, it is often convenient to have them in simplified form.

Definition 3 (2.8). A context-free grammar is in Chomsky normal form if every rule is of the form

A → BC or
A → a

where a is any terminal and B and C are not the start variable.
In addition,

S → ε

is permitted if S is the start variable.

Chomsky Normal Form (cont.)

Theorem 4 (2.9). Any context-free language is generated by a context-free grammar in the Chomsky normal
form.

1. Add S0 → S, where S0 is a new start symbol and S was the original start symbol.

2. Remove an ε rule A → ε if A is not the start symbol and add R → uv for each R → uAv. R → ε is
added unless it had been removed before. Repeat until no ε rule is left.

3. Remove a unit rule A → B and, for each B → u, add A → u unless this is a unit rule previously
removed. Repeat until no unit rule is left.

4. Replace each A → u1u2 . . . uk (k ≥ 3) with A → u1A1, A1 → u2A2, . . ., Ak−2 → uk−1uk. If ui is a
terminal, replace ui with a new variable Ui and add Ui → ui.

An Example Conversion
Let us apply the described procedure to covert the following CFG to Chomsky normal form.

S → ASA | aB
A → B | S
B → b | ε

• Add a new start symbol.
S0 → S
S → ASA | aB
A → B | S
B → b | ε

An Example Conversion (cont.)

• Remove ε rule B → ε.
S0 → S
S → ASA | aB | a
A → B | S | ε
B → b��| ε

• Remove A → ε.
S0 → S
S → ASA | aB | a | SA | AS | S
A → B | S ��| ε
B → b

5

An Example Conversion (cont.)

• Remove unit rule S → S.
S0 → S

S → ASA | aB | a | SA | AS ��| S
A → B | S
B → b

• Remove S0 → S.
S0 → ��S | ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → B | S
B → b

An Example Conversion (cont.)

• Remove A → B.
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS
A → ��B | S | b
B → b

• Remove A → S.
S0 → ASA | aB | a | SA | AS
S → ASA | aB | a | SA | AS

A → ��S | b | ASA | aB | a | SA | AS
B → b

An Example Conversion (cont.)

• Convert S0 → ASA, S → ASA, and A → ASA.

S0 → AA1,1 | aB | a | SA | AS
S → AA2,1 | aB | a | SA | AS
A → b | AA3,1 | aB | a | SA | AS

A1,1 → SA
A2,1 → SA
A3,1 → SA

B → b

An Example Conversion (cont.)

• Convert S0 → aB, S → aB, and A → aB.

S0 → AA1,1 | U1B | a | SA | AS
S → AA2,1 | U2B | a | SA | AS
A → b | AA3,1 | U3B | a | SA | AS

A1,1 → SA
A2,1 → SA
A3,1 → SA
U1 → a
U2 → a
U3 → a
B → b

6

2 Pushdown Automata

Pushdown Automata

• Pushdown automata (PDAs) are like nondeterministic finite automata but have an extra component
called a stack .

• A stack is valuable because it can hold an unlimited amount of information.

• In contrast with the finite automata situation, nondeterminism adds power to the capability that
pushdown automata would have if they were allowed only to be deterministic.

• Pushdown automata are equivalent in power to context-free grammars.

• To prove that a language is context-free, we can give either a context-free grammar generating it or a
pushdown automaton recognizing it.

Pushdown Automata (cont.)

Source: [Sipser 2006]

Pushdown Automata (cont.)

Source: [Sipser 2006]

Definition of a PDA

Definition 5 (2.13). A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F), where Q, Σ, Γ, and F are
all finite sets, and

1. Q is the set of states,

7

2. Σ is the input alphabet,

3. Γ is the stack alphabet,

4. δ : Q× Σε × Γε −→ P(Q× Γε) is the transition function,

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of accept states.

An Example PDA

Source: [Sipser 2006]

Computation of a PDA

• Let M = (Q,Σ,Γ, δ, q0, F) be a PDA and w be a string over Σ.

• We say that M accepts w if we can write w = w1w2 . . . wn, where wi ∈ Σε, and sequences of states
r0, r1, . . . , rn ∈ Q and strings s0, s1, . . . , sn ∈ Γ∗ exist such that:

1. r0 = q0 and s0 = ε,

2. for i = 0, 1, . . . , n − 1, (ri+1, b) ∈ δ(ri, wi+1, a) and si = at and si+1 = bt for some a, b ∈ Γε and
t ∈ Γ∗.

3. rn ∈ F .

Computation of a PDA (cont.)

8

Source: [Sipser 2006]

Computation of a PDA (cont.)

Source: [Sipser 2006]

Equivalence of PDAs and CFGs

Theorem 6 (2.20). A language is context free if and only if some pushdown automaton recognizes it.

• Recall that a context-free language is one that can be described with a context-free grammar.

• We show how to convert any context-free grammar into a pushdown automaton that recognizes the
same language and vice versa.

CFGs “⊆” PDAs

Lemma 7 (2.21). If a language is context free, then some pushdown automaton recognizes it.

• Let G be a CFG generating language A. We convert G into a PDA P that recognizes A.

• P begins by writing the start variable on its stack.

• P ’s nondeterminism allows it to guess the sequence of correct substitutions. For example, to simulate
that A → u is selected, A on the top of the stack is replaced with u.

• The top symbol on the stack may not be a variable. Any terminal symbols appearing before the first
variable are matched immediately with symbols in the input string.

9

CFGs “⊆” PDAs (cont.)

Source: [Sipser 2006]

CFGs “⊆” PDAs (cont.)

Source: [Sipser 2006]

CFGs “⊆” PDAs (cont.)

10

Source: [Sipser 2006]

CFGs “⊆” PDAs (cont.)

Grammar:
S → aTb | b
T → Ta | ϵ

Source: [Sipser 2006]

PDAs “⊆” CFGs

Lemma 8 (2.27). If some pushdown automaton recognizes a language, then it is context free.

• Convert a PDA P into an equivalent CFG G.

• Modify P so that

1. it has a single accept state,

2. it empties its stack before accepting, and

3. each transition either pushes a symbol onto the stack or pops one off the stack, but not both.

PDAs “⊆” CFGs (cont.)

• For each pair of states p and q in P , grammar G will have a variable Apq.

• Apq generates all the strings that can take P from p with an empty stack to q with an empty stack (or
without touching the contents already on the stack when P was in state p).

• The start symbol is Aq0qa , where q0 is the initial state and qa the only accept state of P .

• Add Apq → aArsb to G if δ(p, a, ε) contains (r, t) and δ(s, b, t) contains (q, ε).

• Add Apq → AprArq to G for each p, q, r ∈ Q.

• Add App → ε to G for each p ∈ Q.

11

PDAs “⊆” CFGs (cont.)

Source: [Sipser 2006]

PDAs “⊆” CFGs (cont.)

Source: [Sipser 2006]

PDAs “⊆” CFGs (cont.)

Claim 1 (2.30). If Apq generates x, then x can bring P from p with empty stack to q with empty stack.

Claim 2 (2.31). If x can bring P from p with empty stack to q with empty stack, then Apq generates x.

PDAs “⊆” CFGs (cont.)
Proof of Claim 2.30 (If Apq generates x, then x can bring P from p with empty stack to q with empty stack.):

The proof is by (strong) induction on the number k (≥ 1) of steps in the derivation of x from Apq .

Basis (k = 1): the only possibility is App → ε. . . .

Induction step (k > 1): suppose Apq ⇒∗ x in k steps. There are two possibilities to consider for the first step.
Case 1 (Apq ⇒ aArsb): suppose that Ars ⇒∗ y s.t. ayb = x in k− 1 steps. From the induction hypothesis, y brings P from

r with empty stack to s with empty stack. . . .

12

Case 2 (Apq ⇒ AprArq): suppose that Apr ⇒∗ y and Arq ⇒∗ z s.t. yz = x in k − 1 steps totally. From the induction

hypothesis, y brings P from p with empty stack to r with empty stack and z brings P from r with empty stack to q with empty

stack. . . .

PDAs “⊆” CFGs (cont.)
Proof of Claim 2.31 (If x can bring P from p with empty stack to q with empty stack, then Apq generates x.):

The proof is by (strong) induction on the number n (≥ 0) of steps in the computation of P going from p to q with empty
stacks on input x.

Basis (n = 0): the computation starts and ends at the same state. . . .

Induction step (n > 0): there are two possibilities to consider.
Case 1: the stack is empty only at the beginning and the end. Suppose P reads a, pushes u, and goes from p to r in the

first step, and reads b, pops the same u, and goes from s to q in the last step. So, Apq → aArsb is in G. Let y be s.t. ayb = x.
Then, y brings P from r to s without touching u and hence y can bring P from r to s with empty stacks. From the induction
hypothesis, Ars ⇒∗ y. . . .

Case 2: the stack becomes empty also elsewhere, say state r. Let y be the part of input bringing P from p to r and z that of

input bringing P from r to s with empty stacks; either computation takes at most n− 1 steps. From the induction hypothesis,

Apr ⇒∗ y and Arq ⇒∗ z. . . .

Regular vs. Context-Free Languages

Source: [Sipser 2006]

Note: this is an inclusion relationship between two classes, not two specific languages (e.g., {0n1n | n ≥
0} ⊆ L(0∗1∗)).

3 Pumping Lemma

The Pumping Lemma for CFL

Theorem 9 (2.34). If A is a context-free language, then there is a number p such that, if s is a string in A
and |s| ≥ p, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

1. for each i ≥ 0, uvixyiz ∈ A,

2. |vy| > 0, and

3. |vxy| ≤ p.

• Let G be a CFG that generates A.

• Consider a “sufficiently long” string s in A that satisfies the following condition:

The parse tree for s is very tall so as to have a long path on which some variable symbol R of G repeats.

13

The Pumping Lemma for CFL (cont.)

Source: [Sipser 2006]

The Pumping Lemma for CFL (cont.)

• Let b be the upper bound on the length of w for any production rule A → w in G.

• Take p to be b|V |+1, where V is the set of variables of G. A string of length at least p is sufficiently
long.

• Consider the smallest parse tree of a string s whose length is at least b|V |+1.

– vy cannot be empty, otherwise we would have an even smaller parse tree.

– To ensure |vxy| ≤ p, choose an R that occurs twice within the bottom |V |+ 1 levels of a path.

Example Non-Context-Free Languages
B = {anbncn | n ≥ 0} is not context-free.

• Let s be apbpcp, where p is the pumping length.

• Cases of dividing s as uvxyz (where |vy| > 0 and |vxy| ≤ p):

1. Both v and y contain only one type of symbol, e.g.,
p︷ ︸︸ ︷

a · · · ·︸︷︷︸
v

︸ ︷︷ ︸
x

· a
p︷ ︸︸ ︷

b · · · ·︸︷︷︸
y

·b
p︷ ︸︸ ︷

c · · · c, in which case, uv2xy2z will have more a’s or b’s than c’s and so is not

in B.

2. Either v or y contains more than one type of symbol, e.g.,

a · · · ·︸︷︷︸
v

· · ·︸︷︷︸
x

·ab·︸︷︷︸
y

· · · bc · · · c, in which case, uv2xy2z will have some a’s and b’s out of order and so

is not in B.

14

Example Non-Context-Free Languages (cont.)
C = {aibjck | 0 ≤ i ≤ j ≤ k} is not context-free.

• Let s be apbpcp.

• Cases of dividing s as uvxyz (where |vy| > 0 and |vxy| ≤ p):

1. Both v and y contain only one type of symbol, e.g.,
p︷ ︸︸ ︷

a · · · ·︸︷︷︸
v

︸ ︷︷ ︸
x

· a
p︷ ︸︸ ︷

b · · · ·︸︷︷︸
y

·b
p︷ ︸︸ ︷

c · · · c, in which case, uv2xy2z will have more a’s or b’s than c’s and so is not

in C, or

a · · · ab · · · ·︸︷︷︸
v

·bc·︸︷︷︸
x

· · ·︸︷︷︸
y

·c, in which case, uv0xy0z will have less b’s or c’s than a’s and so is not in

C.

2. Either v or y contains more than one type of symbol, e.g.,

a · · · ·︸︷︷︸
v

· · ·︸︷︷︸
x

·ab·︸︷︷︸
y

· · · bc · · · c, in which case, uv2xy2z will have some a’s and b’s out of order and so

is not in C.

Example Non-Context-Free Languages (cont.)
D = {ww | w ∈ {0, 1}∗} is not context-free.

• Let s be 0p1p0p1p.

• Cases of dividing s as uvxyz (where |vy| > 0 and |vxy| ≤ p):

1. The substring vxy is entirely within the first or second half, e.g.,
p︷ ︸︸ ︷

0 · · · ︸ ︷︷ ︸
vxy

· · · 0
p︷ ︸︸ ︷

1 · · · · · · 1
p︷ ︸︸ ︷

0 · · · 0
p︷ ︸︸ ︷

1 · · · 1, in which case, uv2xy2z will move a 1 to the first position of the

second half and so is not of the form ww.

2. The substring vxy straddles the midpoint of s, i.e.,

0 · · · 01 · · · · 10 · · ·︸ ︷︷ ︸
vxy

·01 · · · 1, in which case, uv0xy0z will have the form 0p1i0j1p with either i or j

less than p and so is not of the form ww.

15

