Decidability
 (Based on [Sipser 2006,2013])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Decidability/Solvability

We shall demonstrate certain problems that can be solved algorithmically and others that cannot.Our objective is to explore the limits of algorithmic solvability.
Why should you study unsolvability?
Knowing when a problem is algorithmically unsolvable is useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution.

* A glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.

Decidable Languages/Problems

- $A_{\text {DFA }}=\{\langle B, w\rangle \mid B$ is a DFA that accepts $w\}$.

This is the acceptance problem (membership problem) for DFAs formulated as a language.

Theorem (4.1)
$A_{\text {DFA }}$ is a decidable language.
$M=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:

1. Simulate B on input w.
2. If the simulation ends in an accept state, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

$A_{\text {NFA }}=\{\langle B, w\rangle \mid B$ is an NFA that accepts $w\}$.
Theorem (4.2)
A_{NFA} is a decidable language.
$N=$ "On input $\langle B, w\rangle$, where B is an NFA and w is a string:

1. Convert NFA B to an equivalent DFA C.
2. Run TM M for deciding $A_{\text {DFA }}$ (as a "procedure") on input $\langle C, w\rangle$.
3. If M accepts, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

$A_{\text {REX }}=\{\langle R, w\rangle \mid R$ is a regular expression that generates $w\}$.
Theorem (4.3)
A_{REX} is a decidable language.
$P=$ "On input $\langle R, w\rangle$, where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent DFA A.
2. Run TM M for deciding A_{DFA} on input $\langle A, w\rangle$.
3. If M accepts, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

$E_{\mathrm{DFA}}=\{\langle A\rangle \mid A$ is a DFA and $L(A)=\emptyset\}$.
Theorem (4.4)
E_{DFA} is a decidable language.
$T=$ "On input $\langle A\rangle$, where A is a DFA:

1. Mark the start state of A.
2. Repeat Step 3 until no new states get marked.
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

- $E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$.

Theorem (4.5)

$E Q_{\text {DFA }}$ is a decidable language.
$F=$ "On input $\langle A, B\rangle$, where A and B are DFAs:

1. Construct DFA $C=(A \cap \bar{B}) \cup(\bar{A} \cap B)$.
2. Run TM T for deciding $E_{\text {DFA }}$ on input $\langle C\rangle$.
3. If T accepts, accept; otherwise, reject."

Decidable Languages/Problems (cont.)

Figure 4.6
The symmetric difference of $L(A)$ and $L(B)$

Source: [Sipser 2006]

Decidable CFL Properties

- $A_{\text {CFG }}=\{\langle G, w\rangle \mid G$ is a CFG that generates $w\}$.

Theorem (4.7)
A_{CFG} is a decidable language.
$S=$ "On input $\langle G, w\rangle$, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.
2. List all derivations with $2|w|-1$ steps.
3. If any of these derivations generate w, accept; otherwise, reject."

Decidable CFL Properties (cont.)

$E_{\mathrm{CFG}}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\emptyset\}$.
Theorem (4.8)
E_{CFG} is a decidable language.
$R=$ "On input $\langle G\rangle$, where G is a CFG:

1. Mark all terminals in G.
2. Repeat Step 3 until no new variables get marked.
3. Mark any variable A where $A \rightarrow U_{1} U_{2} \cdots U_{k}$ is a rule in G and each symbol $U_{1}, U_{2}, \cdots, U_{k}$ has already been marked.
4. If the start symbol is not marked, accept; otherwise, reject."

Decidability of CFLs

Theorem (4.9)
Every context-free language is decidable.
Let G be a CFG for the given language A and design a TM M_{G} that decides A.
$M_{G}=$ "On input w :

1. Run TM S for deciding A_{CFG} on input $\langle G, w\rangle$.
2. If S accepts, accept; otherwise, reject."

Classes of Languages

figure 4.10

The relationship among classes of languages

Source: [Sipser 2006]

Classes of Languages (cont.)

Chomsky Hierarchy	Grammar	Language	Computation Model
Type-0	Unrestricted	R.E.	Turing Machine
N/A	(no common name)	Recursive	Decider
Type-1	Context-Sensitive	Context-Sensitive	Linear Bounded
Type-2	Context-Free	Context-Free	Pushdown
Type-3	Regular	Regular	Finite

Recall that Recursively Enumerable (R.E.) \equiv Turing-recognizable and Recursive \equiv Decidable (Turing-decidable).
Linear Bounded Automata will be introduced later.

Undecidability

We shall prove that there is a specific problem that is algorithmically unsolvable.

- This result demonstrates that computers are limited in a very fundamental way.
- Unsolvable problems are not necessarily esoteric. Some ordinary problems that people want to solve may turn out to be unsolvable.
For example, the general problem of software verification is not solvable by computer.
- The specific problem that we will prove algorithmically unsolvable is the one of testing whether a Turing machine accepts a given input string.

The Acceptance Problem

$A_{\text {TM }}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$.
Theorem (4.11)
A_{TM} is undecidable.
We will prove this fundamental result later.

- On the other hand, $A_{\text {TM }}$ is Turing-recognizable.

The Acceptance Problem (cont.)

$U=$ "On input $\langle M, w\rangle$, where M is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."

- If we had (actually not) some way to determine that M was not halting on w, then we could turn the recognizer U into a decider.
Note: The Turing machine U is an example of the universal Turing machine, as it is capable of simulating any other Turing machine from the description of that machin. The universal Turing machine inspired "stored-program" computers.

Countable vs. Uncountable Sets

Definition (4.12)

Let f be a function from A to B.
We say that f is one-to-one if $f(a) \neq f(b)$ whenever $a \neq b$.
Say that f is onto if, for every $b \in B$, there is an $a \in A$ such that $f(a)=b$.
A function that is both one-to-one and onto is called a correspondence.
Two sets are considered to have the same size if there is a correspondence between them.

Definition (4.14)

A set A is countable if either it is finite or it has the same size as $\mathcal{N}=\{1,2,3, \cdots\}$; it is uncountable, otherwise.

Countable vs. Uncountable Sets (cont.)

路

FIGURE 4.16

A correspondence of \mathcal{N} and \mathcal{Q}

Source: [Sipser 2006]

Uncountable Sets

A real number is one that has a (possibly infinite) decimal representation.
Let \mathcal{R} be the set of real numbers.
Theorem (4.17)
\mathcal{R} is uncountable.

Uncountable Sets (cont.)

Assume that a correspondence f existed between \mathcal{N} and \mathcal{R}.

n	$f(n)$
1	$3.14159 \cdots$
2	$55.5 \underline{5555} \cdots$
3	$0.12 \underline{32} 45 \cdots$
4	$0.500 \underline{0} 0 \cdots$
\vdots	\vdots

We can find an $x, 0<x<1$, so that the i-th digit following the decimal point of x is different from that of $f(i)$; for example, $x=0.4641 \cdots$ is a possible choice.
This proof technique is called diagonalization, discovered by Georg Cantor in 1873.

Unrecognizability

Corollary (4.18)

Some languages are not Turing-recognizable.
The set of all Turing machines is countable because each Turing machine M has an encoding into a string $\langle M\rangle$.
Let \mathcal{L} be the set of all languages over alphabet Σ.

- We can show that there is a correspondence between \mathcal{L} and the uncountable set \mathcal{B} of all infinite binary sequences.
Let $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, \cdots\right\}$.
- Each language $A \in \mathcal{L}$ has a unique sequence in \mathcal{B}, where the i-th bit is a 1 if and only if $s_{i} \in A$.

Undecidability of the Acceptance Problem

Suppose H is a decider for $A_{\text {TM }}$:

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

Let $D=$ "On input $\langle M\rangle$, where M is a TM:

1. Run H on input $\langle M,\langle M\rangle\rangle$.
2. If H accepts, reject and if H rejects, accept."

When D takes itself, namely $\langle D\rangle$, as input:

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

Undecidability of the Acceptance Problem (conta)

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept		accept		
M_{2}	accept	accept	accept	accept	
M_{3}					\cdots
M_{4}	accept	accept			
\vdots					

figure 4.19

Entry i, j is accept if M_{i} accepts $\left\langle M_{j}\right\rangle$

Source: [Sipser 2006]

Undecidability of the Acceptance Problem (conta)

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots
M_{1}	accept	reject	accept	reject	
M_{2}	accept	accept	accept	accept	\ldots
M_{3}	reject	reject	reject	reject	\cdots
M_{4}	accept	accept	reject	reject	
\vdots					

figure 4.20
Entry i, j is the value of H on input $\left\langle M_{i},\left\langle M_{j}\right\rangle\right\rangle$

Source: [Sipser 2006]

Undecidability of the Acceptance Problem (conta)

FIGURE 4.21

If D is in the figure, a contradiction occurs at "?"

Source: [Sipser 2006]

A Turing-Unrecognizable Language

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem (4.22)

A language is decidable if and only if it is both Turing-recognizable and co-Turing-recognizable.

Let M_{1} be a recognizer for A and M_{2} be a recognizer for \bar{A}.

- $M=$ "On input w :

1. Run both M_{1} and M_{2} on input w in parallel. (M takes turns simulating one step of each machine until one of them halts.)
2. If M_{1} accepts, accept and if M_{2} accepts, reject."

A Turing-Unrecognizable Language (cont.)

$\overline{A_{\mathrm{TM}}}=\{\langle M, w\rangle \mid M$ is a TM and M does not accept $w\}$.

Corollary (4.23)

$\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
$A_{\text {TM }}$ is Turing-recognizable, but not decidable.

- From Theorem 4.22, $A_{\text {Тм }}$ must not be co-Turing-recognizable.

Therefore, $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.

