Homework Assignment \#4

Due Time/Date

This assignment is due $2: 20 \mathrm{PM}$ Tuesday, March 26 , 2024. Late submission will be penalized by 20% for each working day overdue.

How to Submit

Please use a word processor or scan hand-written answers to produce a single PDF file and name the file according to this pattern: "b107050xx-hw4". Upload the PDF file to the NTU COOL site for this course. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

(Note: problems marked with "Exercise X.XX" or "Problem X.XX" are taken from [Sipser 2013] with probable adaptation.)

1. (Problem $1.43 ; 10$ points) An all-NFA M is a 5 -tuple $(Q, \Sigma, \delta, q, F)$ that accepts $x \in \Sigma^{*}$ if every possible state that M could be after reading input x is a state from F. Note, in contrast, that an ordinary NFA accepts a string if some state among these possible states is an accept state. Prove that all-NFAs recognize the class of regular languages.
2. (Problem 1.66; 20 points) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let h be a state of M called its "home". A synchronizing sequence for M and h is a string $s \in \Sigma^{*}$ where $\delta(q, s)=h$ for every $q \in Q$. Say that M is synchronizable if it has a synchronizing sequence for some state h. Prove that, if M is a k-state synchronizable DFA, then it has a synchronizing sequence of length at most k^{3}. (Note: $\delta(q, s)$ equals the state where M ends up, when M starts from state q and reads input s.)
3. (Problem 1.61; 20 points) Let the rotational closure of language A be $R C(A)=\{y x \mid x y \in A\}$.
(a) Show that, for any language A, we have $R C(A)=R C(R C(A))$ (i.e., rotational closure, as an operation/function, is idempotent).
(b) Show that the class of regular languages is closed under rotational closure.
4. (Problem $1.64 ; 20$ points) If A is any language, let $A_{\frac{1}{2}-}$ be the set of all first halves of strings in A so that

$$
A_{\frac{1}{2}-}=\{x \mid \text { for some } y,|x|=|y| \text { and } x y \in A\}
$$

Show that if A is regular, then so is $A_{\frac{1}{2}-}$.
5. (Problem 1.40; 10 points) Let

$$
\Sigma_{2}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

Here, Σ_{2} contains all columns of 0 s and 1 s of length two. A string of symbols in Σ_{2} gives two rows of 0 s and 1 s .

Consider the top and bottom rows to be strings of 0 s and 1 s and let

$$
E=\left\{w \in \Sigma_{2}^{*} \mid \text { the bottom row of } w \text { is the reverse of the top row of } w\right\}
$$

Show that E is not regular.
6. (Problem 1.71; 20 points) Let $\Sigma=\{0,1\}$.
(a) Let $A=\left\{1^{k} x \mid x \in \Sigma^{*}\right.$ and x contains at least $k 1 \mathrm{~s}$, for $\left.k \geq 1\right\}$. Show that A is regular.
(b) Let $B=\left\{1^{k} x \mid x \in \Sigma^{*}\right.$ and x contains at most $k 1$ s, for $\left.k \geq 1\right\}$. Show that B is not regular.

