Homework Assignment \#5

Due Time/Date

This assignment is due 1:20PM Tuesday, April 2, 2024. Late submission will be penalized by 20% for each working day overdue.

How to Submit

Please use a word processor or scan hand-written answers to produce a single PDF file and name the file according to this pattern: "b107050xx-hw5". Upload the PDF file to the NTU COOL site for this course. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

(Note: problems marked with "Exercise X.XX" or "Problem X.XX" are taken from [Sipser 2006, 2013] with probable adaptation.)

1. (Exercise 2.1; 10 points) Consider the following CFG discussed in class, where for convenience the variables have been renamed with single letters.

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

Give (leftmost) derivations and the corresponding parse trees for the following strings.
(a) $a+(a \times a)$
(b) $((a) \times a)$
2. (Exercise 2.4; 10 points) Give CFGs that generate the following languages. In all parts the alphabet Σ is $\{0,1\}$.
(a) $\{w \mid$ the length of w is a multiple of 3$\}$
(b) $\left\{w \mid w=w^{R}\right.$, that is, w is a palindrome $\}$
3. (Exercise 2.6d; 10 points) Give a CFG that generates the language $\left\{x_{1} \# x_{2} \# \cdots \# x_{k} \mid k \geq 1\right.$, each $x_{i} \in\{a, b\}^{*}$, and for some i and $\left.j, x_{i}=x_{j}^{R}\right\}$.
4. (Problem 2.33; 20 points) Let $\Sigma=\{a, b\}$. Give a CFG generating the language of strings with twice as many a 's as b 's (no restriction is imposed on the order in which the input symbols may appear). Prove that the CFG is correct.
5. (Exercise 2.8 adapted; 10 points) Show that the string "the boy sees a girl with a telescope" has two different leftmost derivations in the following CFG.

$$
\begin{aligned}
\langle\text { SENTENCE }\rangle & \rightarrow\langle\text { NOUN-PHRASE }\rangle\langle\text { VERB-PHRASE }\rangle \\
\langle\text { NOUN-PHRASE }\rangle & \rightarrow\langle\text { CMPLX-NOUN }\rangle \mid \\
& \langle\text { CMPLX-NOUN }\rangle \text { PREP-PHRASE }\rangle \\
\langle\text { VERB-PHRASE }\rangle & \rightarrow\langle\text { CMPLX-VERB }\rangle \\
& \langle\text { CMPLX-VERB }\rangle\langle\text { PREP-PHRASE }\rangle \\
\langle\text { PREP-PHRASE }\rangle & \rightarrow\langle\text { PREP }\rangle \text { CMPLX-NOUN }\rangle \\
\text { CCMPLX-NOUN }\rangle & \rightarrow\langle\text { ARTICLE }\rangle\langle\text { NOUN }\rangle \\
\text { } \mathrm{CMPLX-VERB} \mathrm{\rangle} & \rightarrow\langle\text { VERB }|\langle\text { VERB }\rangle \text { NOUN-PHRASE }\rangle \\
\langle\text { ARTICLE }\rangle & \rightarrow \text { a } \mid \text { the } \\
\langle\text { NOUN }\rangle & \rightarrow \text { boy } \mid \text { girl } \mid \text { flower } \mid \text { telescope } \\
\langle\text { VERB }\rangle & \rightarrow \text { touches } \mid \text { likes } \mid \text { sees } \\
\langle\text { PREP }\rangle & \rightarrow \text { with }
\end{aligned}
$$

6. (Exercise 2.9; 20 points) Give a CFG that generates the language

$$
A=\left\{a^{i} b^{j} c^{k} \mid i=j \text { or } j=k \text { where } i, j, k \geq 0\right\} .
$$

Is your grammar ambiguous? Why or why not?
7. (Exercise 2.14; 20 points) Convert the following CFG (where A is the start variable) into an equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

$$
\begin{aligned}
& A \rightarrow B A B|B| \varepsilon \\
& B \rightarrow 0 B 1 \mid \varepsilon
\end{aligned}
$$

