IP Security

Professor Yeali S. Sun
Information Management Department
National Taiwan University
Reference

Outline

- Introduction
- IP Security Architecture
- Security Association (SA)
- Security Protocols
 - Operation Modes – Transport, Tunnel
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- Internet Key Management (IKE)
 - Oakley key exchange protocol
 - ISAKMP key management protocol
IPSec - Introduction

Secure communication

Authentication

Secure Systems

Corporate Network

Database Server

VPN TUNNEL

Internet

ISP

VPN Router

Residential Network

Mobile Host

Branch Office
Network Security - Authentication

- **Goal**: convenient, secure authentication methods and mechanisms
 - Low-cost, easy to carry
 - Secure

- 相關技術趨勢：
 - 通行碼、IC卡、手機、指紋、聲紋、視網膜…..
 - 多種方法合併使用提高安全性
 - 整合 Public Key Infrastructure，達成網路身分證的目的

Copyright 2008 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.
Network Security: Secure Communication

- **Goals**
 - secrecy, integrity, origin verification

- **Technologies**:
 - **IPsec** (RFC-24xx), **IPSP** (IP Security Policy, Internet-draft), **IKE** (Internet Key Exchange, RFC-2400)
 - encryption: e.g., AES
 - High-performance processing: encryption chip, IPSec chip
Network Security – Secure Systems

- **Goals**
 - Prevent hosts from malware attacks such as DoS, service disruption, data stealing and destruction and viruses.

- **Technologies**:
 - Firewall, network security auditing, monitoring, and vulnerability check, intrusion detection, anti-virus, etc.
 - Data backup, remote backup & disaster recovery, fault-tolerance
 - Information Security Management System - a systematic approach to managing sensitive company information so that it remains secure. It encompasses people, processes and IT systems.
 - British Standards Institution (BSI) published a code of practice for these systems, which has now been adopted internationally as ISO/IEC 27001:2005.
Introduction

- In 1994, the Internet Architecture Board (IAB) initiated the work on IP security

- **IPsec provides security service at the IP layer**

- It allows a system to select required security protocols (authentication and/or encryption) and algorithm(s), and put in place any cryptographic keys necessary.

- Support of IPsec is mandatory for IPv6 and optional for IPv4.
Internet Security - Solutions

Web Browser
 SSL
 SNP, Kerberos
 Socket Layer
 TCP/UDP
 IP/IPsec
 Link Layer Protocol

Web Server
 SSL
 SNP, Kerberos
 Socket Layer
 TCP/UDP
 IP/IPsec
 Link Layer Protocol

Internet
IPsec – History

- IETF
 - IP Security Protocol Working Group (IPSEC)
- In August, 1995 - basic IPsec kernel (RFC 1636 et. al)
 - To secure the network infrastructure from unauthorized monitoring (eavesdrop) and control (intercept and replay) of network traffic
 - To secure end-user-to-end-user traffic using authentication and encryption mechanisms
IPsec – History (cont’d)

- In November, 1998 - IPsec kernel & IKE (RFC 24xx 系列)
- Two more working groups
 - IP Security Policy Working Group （IPSP）
 - IP Security Remote Access Working Group （IPSRA）
The most serious types of attacks in 1995 ...

- **Computer Emergency Response Team (CERT) in USA**
- **IP spoofing**
 - creates packets with *false IP addresses* and
 - exploits applications that use authentication based on IP
- **Various forms of eavesdropping and packet sniffing**
 - Attackers read transmitted information (including logon information and database contents)
Application of IPSec

- Encrypt and/or authenticate all traffic at the IP level
- A typical scenario
- IPSec protocols operate in networking devices, e.g., routers and firewalls, connecting LANs to the Internet, or hosts (mobile users)
 - Encrypt and compress all traffic going into the WAN;
 - Decrypt and decompress traffic coming from the WAN
- These operations are transparent to workstations, servers and users on the Intranet
IP Security Scenario

User system with IPSec

Public (Internet) or private network

(1) host-to-gateway

Networking device with IPSec
IP Security Scenario

User system with IPSec

Public (Internet) or private network

(3) Host-to-host

IP header
IPSec header
Secure IP payload

IPSec-enabled
Benefits of IPsec

- All IP-based applications
- Routing Applications
IP Security Architecture

- Documents
- Services
- Concept of Service Association
IPSec Document Overview

Architecture

ESP protocol

Encryption algorithm

Domain of Interpretation (DOI)

AH protocol

Authentication algorithm

Key Management
IPsec - Introduction

- Encapsulation Modes
 - To determine the **security scope** - Transport or Tunnel **mode**

- Security Protocols
 - Provide different **levels** of security
IPsec Documents

- DOI (Domain of Interpretation)
 - Contains *values* needed for the other documents to relate to each other
 - e.g., *identifiers* for approved encryption and authentication algorithms, and *operational parameters* such as key lifetime.
 - RFC 2407 - The Internet IP Security Domain of Interpretation for ISAKMP
IPsec – Packet Encapsulation

- **Transport mode**: host-to-host
- **Tunnel mode**: gateway-to-
 [host/gateway]

IPSec between Gateways

IPSec between Hosts

Copyright 2008 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.
IPsec - Security Protocol

- Authentication Header (AH)
 - Data Origin Authentication
 - Connectionless Integrity

- Encapsulating Security Payload (ESP)
 - Confidentiality (Encryption)
 - Data Origin Authentication (option)
 - Connectionless Integrity (option)
IPsec – Security Associations (SA)

- An SA is a **one-way relationship** between a sender and a receiver that provides security services to the traffic carried on it.
- For two-way secure exchange – two SAs are needed
IPsec - Security Association (SA) (cont’d)

- An SA is uniquely identified by *three* parameters:
 - Security Parameter Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier (e.g., AH or ESP)

- Key generation
 - manually keying
 - automated – IKE (Internet Key Exchange)
Security Association - Identity Parameters

- **Security Parameter Index (SPI)**
 - A bit string assigned to an SA
 - Only of local (w.r.t. sender) significance
 - Carried in AH and ESP headers to enable the receiver to select the SA under which a received packet will be processed.

- **IP Destination Address**

- **Security Protocol Identifier**
 - AH or ESP
SA: Many-to-many relationship

Sender 1
- S1, (SPI₁, R1, AH)
- S1, (SPI₃, R1, ESP)
- S1, (SPI₂, R2, AH)

Sender 2
- S2, (SPI₃, R1, AH)

Receiver 1
- S1, (SPI₁, R1, AH)

Receiver 2
Security Association - other Operational Parameters (1/4)

- **Sequence Number Counter**
 - A 32-bit value used to generate the Sequence Number field in AH or ESP headers

- **Sequence Number Overflow**
 - A flag to indicate whether to generate an **auditable event** when overflow of sequence number counter occurs.
 - The goal is to prevent further transmission of packets on this SA.
Security Association- other Operational Parameters (2/4)

- **Anti-Replay Window**
 - Used to determine whether an inbound AH or ESP packet is a replay.

- **AH Information**
 - About *authentication algorithm, keys, key lifetimes*, and related parameters used with AH.
Security Association—other Operational Parameters (3/4)

- ESP Information
 - About encryption and authentication algorithms, keys, initialization values, key lifetimes, and related parameters used with ESP

- Lifetime of a Security Association
 - A time interval or byte count after which an SA must be replaced with a new SA (and new SPI) or terminated
 - Must indicate which of these actions should occur.
SA Selectors (filters)

- **Security Policy Database** (SPD) contains entries.
- Each SPD entry contains a set of upper-layer protocol field values called **selectors**.
- **Selectors are used to filter incoming and outgoing traffic in order to map it into a particular SA.**
- An entry may associate with one single SA or multiple SAs; or multiple entries may relate to a single SA.
Packet Classification: SA filtering

Internet \(\rightarrow \) traffic flows

SA/ Packet Classifier (selectors) \(\rightarrow \) SA_1 \(\rightarrow \) SA_2 \(\rightarrow \) \(\ldots \) \(\rightarrow \) SA_n

Security Policy Database
SA Processing

- Compare the values of the selector fields against SPD to find a matching entry
 - may point to zero or more SAs
- Determine the SA, if any, and its associated SPI.
- Do the required IPsec processing (AH or ESP).
SPD - Selectors

- **#1: Destination IP address**
 - A single address, an enumerated list or range of addresses, subnet, or a wildcard

- **#2: Source IP address**
 - A single address, an enumerated list or range of addresses, subnet, or a wildcard

- **#3: User ID**
 - A user identifier from the operating system, available if IPsec is running on the same operating system as the user
SPD – Selectors (cont’d)

- **#4: Data Sensitivity Level**
 - Used for systems providing information flow security (e.g., Secret or Unclassified)

- **#5: Transport Layer Protocol**
 - A single protocol number, a list of protocol number

- **#6: Source and Destination Ports**
 - Individual TCP/UDP port values, an enumerated list of ports or a wildcard
SPD – Selectors (cont’d)

- **#7: IPsec Protocol**
 - AH or ESP or AH/ESP
 - IPv4 protocol or IPv6 Next Header field

- **#8: IPv4 Type of Service (TOS)**
 - A specific value or a wildcard
To be continued ...